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Final Report

This Final Report summarizes activities under the Air Force Office of Scientific Research (AFOSR)

Grant No. FA9550-10-1-0083 entitled “PREDICTING AND CONTROLLING COMPLEX NETWORKS”

from 1 April 2010 to 31 March 2015. PI is Ying-Cheng Lai from Arizona State University (ASU).

Contents

1 Objectives 2

2 List of Publications 2

3 Accomplishments and New Findings 5

3.1 Uncovering the full topology of oscillator networks . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Cascading failures and the emergence of cooperation in evolutionary-game based models of

social and economic networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Information explosion on complex networks and control . . . . . . . . . . . . . . . . . . . 7

3.4 Pattern formation, synchronization and outbreak of biodiversity in cyclically competing games 8

3.5 Predicting catastrophes in nonlinear dynamical systems by compressive sensing . . . . . . . 9

3.6 Time-series based prediction of complex oscillator networks via compressive sensing . . . . 11

3.7 Reconstruction of social networks based on evolutionary-game data via compressive sensing 12

3.8 Optimizing controllability of complex networks by minimum structural perturbations . . . . 15

3.9 Detecting hidden nodes in complex networks from time series based on compressive sensing 17

3.10 Forecasting synchronizability of complex networks from data . . . . . . . . . . . . . . . . . 20

3.11 Emergence of grouping in multi-resource minority game dynamics . . . . . . . . . . . . . . 21

3.12 Optimizing cooperation on complex networks in the presence of failure . . . . . . . . . . . 23

3.13 Exact controllability of complex networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.14 Emergence of scaling in human-interest dynamics . . . . . . . . . . . . . . . . . . . . . . . 26

3.15 Robustness of chimera states in complex dynamical systems . . . . . . . . . . . . . . . . . 28

3.16 Uncovering hidden nodes in complex networks in the presence of noise . . . . . . . . . . . 30

3.17 Reconstructing propagation networks with natural diversity and identifying hidden source . . 32

3.18 Spatiotemporal patterns and predictability of cyberattacks . . . . . . . . . . . . . . . . . . . 33

4 Personnel Supported and Theses Supervised by PI 35

4.1 Personnel Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Theses supervised by PI in the project area . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Interactions/Transitions 35

5.1 Collaboration with AFOSR scientist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Invited talks on topics derived from the project . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Past Honors 37

1



1 Objectives

• Prediction: to develop methods to uncover the structures and topologies of complex networks as well

as various dynamical processes from time series or data.

• Control: to understand the controllability of complex networks and articulate methods to control

dynamical processes that they support.

2 List of Publications

1. J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, “Noise bridges dynamical correlation and topology in

coupled oscillator networks,” Physical Review Letters 104, 058701, 1-4 (2010).

2. H.-J. Shi, R. Yang, W.-X. Wang, and Y.-C. Lai, “Basins of attraction for species extinction and

coexistence in spatial rock-paper-scissors games,” Physical Review E (Rapid Communications) 81,

030901(R), 1-4 (2010).

3. W.-X. Wang, Y.-C. Lai, and C. Grebogi, “Effect of epidemic spreading on species coexistence in

spatial games,” Physical Review E 81, 046113, 1-4 (2010). One figure from this paper was selected

for “Kaleidoscope” of PRE.

4. R. Yang, W.-X. Wang, Y.-C. Lai, and C. Grebogi, “Role of intraspecific competition in the coexis-

tence of mobile populations in spatially extended ecosystems,” Chaos 20, 023113, 1-6 (2010). This

work was selected by the Virtual Journal of Biological Physics Research for the June 1, 2010 issue

(http://www.vjbio.org).

5. X. Ni, W.-X. Wang, Y.-C. Lai, and C. Grebogi, “Cyclic competition of mobile species on continuous

space: pattern formation and coexistence,” Physical Review E 82, 066211, 1-8 (2010). This work

was selected by the Virtual Journal of Biological Physics Research for the January 1, 2011 issue

(http://www.vjbio.org).

6. X. Ni, R. Yang, W.-X. Wang, Y.-C. Lai, and C. Grebogi, “Basins of coexistence and extinction in

spatially extended ecosystems of cyclically competing species,” Chaos 20, 045116, 1-8 (2010). This

work was selected by the Virtual Journal of Biological Physics Research for the January 1, 2011 issue

(http://www.vjbio.org).

7. W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi, “Predicting catastrophes in nonlinear

dynamical systems by compressive sensing,” Physical Review Letters 106, 154101, 1-4 (2011).

8. W.-X. Wang, X. Ni, Y.-C. Lai, and C. Grebogi, “Pattern formation, synchronization and outbreak of

biodiversity in cyclically competing games,” Physical Review E 83, 011917, 1-9 (2011).

9. R.-R. Liu, W.-X. Wang, Y.-C. Lai, G.-R. Chen, and B.-H. Wang, “Optimal convergence in naming

game with geography-based negotiation on small-world networks,” Physics Letters A 375, 363-367

(2011).

10. H.-X. Yang, W.-X. Wang, Y.-B. Xie, Y.-C. Lai, and B.-W. Wang, “Transportation dynamics on net-

works of mobile agents,” Physical Review E 83, 016102, 1-5 (2011).

11. L.-L. Jiang, M. Perc, W.-X. Wang, Y.-C. Lai and B.-H. Wang, “Impact of link deletions on public

cooperation in scale-free networks,” Europhysics Letters 93, 40001, 1-6 (2011).

12. W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and M. A. F. Harrison, “Time-series based prediction of

complex oscillator networks via compressive sensing,” Europhysics Letters 94, 48006, 1-6 (2011).
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13. L. Huang and Y.-C. Lai, “Cascading dynamics in complex quantum networks,” Chaos 21, 025107,

1-6 (2011). This work was selected by July 2011 issue of Virtual Journal of Quantum Information

(http://www.vjquantuminfo.org).

14. W.-X. Wang, Y.-C. Lai, and D. Armbruster, “Cascading failures and the emergence of cooperation in

evolutionary game based models of social and economical networks,” Chaos 21, 033112, 1-12 (2011).

15. H.-X. Yang, W.-X. Wang, Y.-C. Lai, Y.-B. Xie, and B.-H. Wang, “Control of epidemic spreading

on complex networks by local traffic dynamics,” Physical Review E (Rapid Communication) 84,

045101(R), 1-4 (2011).

16. W.-X. Wang, Y.-C. Lai, C. Grebogi, and J.-P. Ye, “Network reconstruction based on evolutionary-

game data via compressive sensing,” Physical Review X 1, 021021, 1-7 (2011).

17. R.-R. Liu, W.-X. Wang, Y.-C. Lai, and B.-H. Wang, “Cascading dynamics on random networks:

crossover in phase transition,” Physical Review E 85, 026110, 1-5 (2012).

18. W.-X. Wang, X. Ni, Y.-C. Lai, and C. Grebogi, “Optimizing controllability of complex networks by

small structural perturbations,” Physical Review E 85, 026115, 1-5 (2012).

19. G.-M. Zhu, H.-J. Yang, R. Yang, J. Ren, B. Li, and Y.-C. Lai, “Uncovering evolutionary ages of nodes

in complex networks,” European Journal of Physics B 85, 106, 1-6 (2012).

20. G. Yan, J. Ren, Y.-C. Lai, C. H. Lai, and B. Li, “Controlling complex networks - how much energy is

needed?” Physical Review Letters 108, 218703, 1-5 (2012).

21. R.-Q. Su, X. Ni, W.-X. Wang, and Y.-C. Lai, “Forecasting synchronizability of complex networks

from data,” Physical Review E 85, 056220, 1-11 (2012).

22. H.-X. Yang, W.-X. Wang, Y.-C. Lai, and B.-H. Wang, “Traffic-driven epidemic spreading on networks

of mobile agents,” Europhysics Letters 98, 68003, 1-5 (2012).

23. L.-L. Jiang, W.-X. Wang, Y.-C. Lai, and X. Ni, “Multi-armed spirals and multi-pairs antispirals in

spatial rock-paper-scissors games,” Physics Letters A 376, 2292-2297 (2012).

24. R.-Q. Su, W.-X. Wang, and Y.-C. Lai, “Detecting hidden nodes in complex networks from time series,”

Physical Review E (Rapid Communication) 85, 065201(R), 1-4 (2012).

25. R. Yang, Y.-C. Lai, and C. Grebogi, “Forecasting the future: is it possible for time-varying nonlinear

dynamical systems?” Chaos 22, 033119, 1-6 (2012).

26. F. Ricci, R. Tonelli, L. Huang, and Y.-C. Lai, “Onset of chaotic phase synchronization in complex

networks of coupled heterogeneous oscillators,” Physical Review E 86, 027201, 1-4 (2012).

27. W.-X. Wang, J. Ren, Y.-C. Lai, and B. Li, “Reverse engineering of complex dynamical networks in

the presence of time-delayed interactions based on noisy time series,” Chaos 22, 033131, 1-8 (2012).

28. Z.-G. Huang, J.-Q. Zhang, J.-W. Dong, L. Huang, and Y.-C. Lai, “Emergence of grouping in multi-

resource minority game dynamics,” Nature Scientific Reports 2, 703, 1-8 (2012).

29. Y.-Z. Chen and Y.-C. Lai, “Optimizing cooperation on complex networks in the presence of failure,”

Physical Review E (Rapid Communications) 86, 045101(R), 1-4 (2012).

30. L. Huang, Y.-C. Lai, and M. A. F. Harrison, “Probing complex networks from measured time series,”

International Journal of Bifurcation and Chaos 22, 1250236, 1-12 (2012).

31. H.-X. Yang, W.-X. Wang, and Y.-C. Lai, “Traffic-driven epidemic outbreak on complex networks:

how long does it take?” Chaos 22, 043146, 1-5 (2012).
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32. Z. Zhou, Z.-G. Huang, L. Huang, Y.-C. Lai, L. Yang, and D.-S. Xue, “Universality of flux-fluctuation

law in complex dynamical systems,” Physical Review E 87, 012808, 1-6 (2013).

33. J.-Q. Zhang, Z.-G. Huang, J.-Q. Dong, L. Huang, and Y.-C. Lai, “Controlling collective dynamics in

complex, minority-game resource-allocation systems,” Physical Review E 87, 052808, 1-9 (2013).

34. J.-P. Park, Y.-H. Do, Z.-G. Huang, and Y.-C. Lai, “Persistent coexistence of cyclically competing

species in spatially extended ecosystems,” Chaos 23, 023128, 1-9 (2013).

35. Z.-Z. Yuan, C. Zhao, Z.-R. Di, W.-X. Wang, and Y.-C. Lai, “Exact controllability of complex net-

works,” Nature Communications 4, 2447, 1-9 (2013).

36. B.-S. Kim, Y.-H. Do, and Y.-C. Lai, “Emergence of synchronization and size scaling in moving-agent

networks,” Physical Review E 88, 042818, 1-7 (2013).

37. Z.-D. Zhao, Z.-M. Yang, Z.-K. Zhang, T. Zhou, Z.-G. Huang, and Y.-C. Lai, “Emergence of scaling

in human-interest dynamics,” Nature Scientific Reports 3, 3472, 1-7 (2013).

38. K. Gong, M. Tang, P. M. Hui, Y. Do, and Y.-C. Lai, “An efficient immunization strategy for community

networks,” PLoS One 8, e83489, 1-11 (2013).

39. N. Yao, Z.-G. Huang, Y.-C. Lai, and Z.-G. Zheng, “Robustness of chimera states in complex dynami-

cal systems,” Nature Scientific Reports 3, 3522, 1-8 (2013).

40. R.-Q. Su, Y.-C. Lai, X. Wang, and Y.-H. Do, “Uncovering hidden nodes in complex network in the

presence of noise,” Nature Scientific Reports 4, 3944, 1-7 (2014).

41. W. Wang, M. Tang, H. Yang, Y.-H. Do, Y.-C. Lai, and G.-W. Lee, “Asymmetrically interacting spread-

ing dynamics on complex layered networks,” Nature Scientific Reports 4, 5097, 1-8 (2014).

42. Z.-S. Shen, W.-X. Wang, Y. Fan, Z.-R. Di, and Y.-C. Lai, “Reconstructing propagation networks with

natural diversity and identifying hidden source,” Nature Communications 5, 4323, 1-10 (2014).

43. H.-F. Zhang, Z.-X. Wu, M. Tang, and Y.-C. Lai, “Effects of behavioral response and vaccination

policy on epidemic spreading - an approach based on evolutionary-game dynamics,” Nature Scientific

Reports 4, 5666, 1-10 (2014).

44. R.-Q. Su, Y.-C. Lai, and X. Wang, “Identifying chaotic FitzHugh-Nagumo neurons using compressive

sensing,” Entropy 16, 3889-3902 (2014).

45. Y.-C. Lai, “Controlling complex, nonlinear dynamical networks,” National Science Review 1, 339-341

(2014).

46. Y.-Z. Chen, Z.-G. Huang, and Y.-C. Lai, “Controlling extreme events on complex networks,” Nature

Scientific Reports 4, 6121, 1-10 (2014).

47. H.-F. Zhang, J.-R. Xie, M. Tang, and Y.-C. Lai, “Suppression of epidemic spreading in complex

networks by local information based behavioral responses,” Chaos 24, 043106, 1-7 (2014).

48. Z.-Z. Yuan, C. Zhao, W.-X. Wang, Z.-R. Di, and Y.-C. Lai, “Exact controllability of multiplex net-

works,” New Journal of Physics 16, 103036, 1-24 (2014).

49. L.-Z. Wang, Z.-G. Huang, Z.-H. Rong, X.-F. Wang, and Y.-C. Lai, “Emergence and evolution of

online social networks,” PLoS ONE 9(11), e111013, 1-6 (2014).

50. Y.-Z. Chen, Z.-G. Huang, S.-H. Xu, and Y.-C. Lai, “Spatiotemporal patterns and predictability of

cyberattacks,” PLoS ONE, accepted (to appear in June 2015).
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3 Accomplishments and New Findings

3.1 Uncovering the full topology of oscillator networks

Previous efforts in network science and engineering were mostly focused on network structures and their

effects on various dynamical processes taking place on the network. The types of processes investigated

include synchronization, virus spreading, traffic flow, and cascading failures. A typical approach in the

field was to implement a particular dynamical process of interest on networks whose connecting topologies

are completely specified. Often, real-world networks such as the Internet, the power grids, transportation

networks, and various biological and social networks were used as examples to demonstrate the relevance

of the dynamical phenomena found from model networks. While this line of research was necessary for

discovering and understanding various fundamental phenomena in complex networks, the “inverse” problem

of network prediction is also extremely important. The basic hypothesis underlying the inverse problem is

that the detailed structure of the network and the node dynamics are totally unknown, but only a limited set of

signals or time series measured from the network is available. The question is whether the intrinsic structure

of the network can be inferred solely from the set of measured time series. Compared with the “direct”

network-dynamics problem, the inverse problem received relatively little attention due to the extremely

challenging nature of the problem. Nonetheless it is of paramount importance to address the problem not

only for advancing network science and engineering, but also for meeting the need to address an array of

realistic applications where large-scale, complex networks arise.

During the performance period, we developed a framework to uncover the full topology of oscillatory

networks from time series in the presence of noise and time delay. The reason to consider noise and time

delay is that they are ubiquitous in real-world complex systems. We obtained the surprising result that,

in the presence of noise, it becomes generally possible to precisely identify interactions based solely on

the correlations among measured time series from various nodes in the underlying network. In particular,

by defining the dynamical correlation between pairwise oscillators as the product of their state differences

from the respective time-averaged values, we obtained a dynamical correlation matrix that can be calculated

purely from time series. Analytically, we found the existence of a one-to-one correspondence between

the correlation matrix and the network connection matrix in the presence of noise. In this sense, it can

be said that noise bridges dynamics and topology, facilitating inference of network structures. Indeed,

understanding the effects of noise on dynamical systems has been a fundamental issue in nonlinear and

statistical physics. While there had been previous works on the interplay between the collective dynamics

and the topology of complex systems under noise (including our own previous AFOSR-sponsored work

on predicting node degrees of complex networks), taking advantage of noise to predict the full connecting

topology of unknown complex oscillatory networks had not been achieved prior to our work. Our philosophy

is in fact to make use of noise to obtain knowledge about the network from noisy data.

Mathematically, our main result and its applicable setting can be summarized, as follows. Consider a

network of N coupled oscillators. Each oscillator, when decoupled, satisfies ẋi = Fi[xi], where xi denotes

the d-dimensional state variable. The dynamics of the whole time-delayed system in a noisy environment

can be described as

ẋi(t) = Fi[xi(t)]− c
N

∑
j=1

Li jH[x j(t− τ)]+ηi, (1)

where H denotes the coupling function, Li j is the element of Laplacian matrix of the underlying network,

c denotes the coupling strength, τ is the time delay, and ηi is a Gaussian noisy process of zero mean and

variance σ2. The element of the dynamical correlation matrix (between time series from nodes i and j) is

5



Ci j = 〈ξi(t)ξ j(t)〉, where ξi(t)≡ xi(t)− (1/N)∑N
i=1 xi(t). Our main result was the following formula:

σ2

2c
C

†
i j ≈

{

Li j + cτ(ki + k j), if i connects with j

0, otherwise,
(2)

where C
†
i j is the element of the pseudo-inverse of the correlation matrix, ki and k j are the degrees of nodes

i and j, respectively. This formula indicates that the network structure can be inferred through the off-

diagonal elements C
†
i j of the dynamical correlation matrix based solely on the measured time series. After

L̂ is predicted, the time delay τ can be estimated as

τ≈

〈

[

L̂− σ2

2c
Ĉ†

]

i j

c[L̂2]i j

〉

i6= j,Li j 6=0,(L̂2)i j 6=0

, (3)

where the subscript in the average 〈·〉 covers all possible pairs of i and j by excluding the diagonal elements

in the matrices L̂ and L̂2, and all pairs with zero elements in the matrix L̂ or L̂2. Excluding zero elements

can effectively reduce the estimation error for τ.

A detailed account of the mathematical theory and results from extensive numerical tests were summa-

rized in the following two papers:

1. J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, “Noise bridges dynamical correlation and topology in

coupled oscillator networks,” Physical Review Letters 104, 058701(1-4) (2010).

2. W.-X. Wang, J. Ren, Y.-C. Lai, and B. Li, “Reverse engineering of complex dynamical networks in

the presence of time-delayed interactions based on noisy time series,” Chaos 22, 033131, 1-8 (2012).

3.2 Cascading failures and the emergence of cooperation in evolutionary-game based mod-

els of social and economic networks

A hallmark of the economic recession in 2008 was the collapse and bankruptcy of a large number of financial

institutions and corporations on a scale that has not been seen since the great depression. The manner by

which the failures occur may be described as a cascading process, where the initial collapse of one or a few

institutions, for example, triggered the failures of many others. While sophisticated economic and social

models can be articulated to describe the process of cascading collapses, to obtain fundamental insights we

were interested in a “minimal” model that can capture the major generic ingredients of the process, which

are independent of the system details. It was hoped that the model could then lead to insights into the

prevention of such cascades. We constructed such a model, carried out a detailed theoretical analysis and

extensive numerical tests, and explored implications.

Our model was based on evolutionary games on large networks, a powerful paradigm to study a variety

of self-organized behaviors in natural, social, and economic systems. In previous works, the tolerance of

individuals to elimination or death had not been investigated in a comprehensive manner, but such a process

is important in different areas. For example, consider the bankruptcy of agents in economic systems. For any

agent, a lowest amount of profit should be maintained for it to survive, which comes from the interactions

with other agents in a certain time period for continuous investment into the future. Another example

is ecosystems, where individuals compete and cooperate for essential life-sustaining resources. If some

minimal requirement for resources cannot be satisfied, individuals will die. In our work, we incorporated

an elimination mechanism into the gaming rules to better mimic the evolution of cooperative behavior in

realistic systems. In particular, we assigned a tolerance parameter to every individual in the network, which

is the lowest payoff needed for an individual to survive. Taking into account the diversity in real-world

systems, each individual can have its own tolerance. For example, the number of interactions of an individual

6



is a characteristic to distinguish it from others, so it can be used to define the tolerance. In a network, the

death of an individual leads to removal of the corresponding node together with all the links with the other

nodes. The game and network thus co-evolve as a result of the elimination. Our main finding was that, in the

presence of defectors, a cascading process of death of individuals can occur in relatively short time, which

can even spread to the whole network, leading to complete extinction. Strikingly, we found that a pure

cooperation state can emerge after the cascade terminates, in which the exclusive survivors are cooperators.

This phenomenon occurs regardless of the type of games and of the network topology. This finding strongly

suggests that defectors, despite their temporary advantages, are vulnerable to catastrophic cascading process.

Cooperation becomes the optimal strategy to maximize benefit and to escape death. As a by-produce, our

work resolved the social dilemma of profit versus cooperation in a natural manner.

Our results can yield insights into the mechanism of catastrophic events in economic and ecosystems.

For example, a large scale bankruptcy of financial organizations may be a typical cascading process where

high-risk investments, a kind of defection behavior, decrease the capacity of agents to resist deficiency and

trigger the outbreak of the cascade. For evolutionary biology, our result may provide hints to the mechanism

of massive species extinction in relatively short time scales.

Results were published in the following two papers:

1. W.-X. Wang, R. Yang, and Y.-C. Lai, “Cascade of elimination and emergence of pure cooperation in

co-evolutionary games on networks,” Physical Review E (Rapid Communications) 81, 035102(R)(1-

4)(2010).

2. W.-X. Wang, Y.-C. Lai, and D. Armbruster, “Cascading failures and the emergence of cooperation in

evolutionary game based models of social and economical networks,” Chaos 21, 033112, 1-12 (2011).

3.3 Information explosion on complex networks and control

Spreading and transportation processes are fundamental and ubiquitous in a variety of complex systems:

the Internet, biological networks, and social networks. Most previous works addressed how the underly-

ing network structure affects the spreading and transportation dynamics, with efforts ranging from routing

data traffic on the Internet to the spreading of epidemic opinions and rumors on either social networks or

communication networks. Often, one focus of analysis and computation was on the asymptotic extent of

the spreading process, as characterized by the percentage of the infected nodes after the termination of the

process. In this regard, various processes such as those described by the two-state spreading model (SIS),

the voter model, and the rumor-spreading model were studied. In most previous works, the entity of spread-

ing, such as a particular type of virus or a piece of information, was assumed to be invariant during the

process. In realistic situations, distortion of the entity during the spreading process can be expected, such

as mutations of viruses, errors in transported data packets, and distorted opinion or rumors. The problem

of information distortion is particularly relevant when human behaviors are involved in the spreading and

transportation process. The distortions can lead to a significant increase, or even a divergence in the number

of messages on the network over the time.

Information explosion has indeed occurred in the modern time. There has been an unprecedented growth

in the number and variety of data collections as technology and network connectivity become increasingly

affordable. Distortion in communication is inevitable and may contribute partially to the growth of data

information. How to hold and release information becomes an issue of increasing importance, with impli-

cations ranging from personal privacy to national security.

We developed a model to address the problem of information explosion and control on complex net-

works. The starting points of our consideration were the following: (i) a node (or an agent) accepts or

discards a message based on the existent information content in its memory, and (ii) information distortion

7



can occur during the spreading process, which can be quantified with the probability p that a message is

distorted after passing through an agent. In principle, the values of p can vary across different agents, but

for simplicity we assumed that the spread in the probabilities is small and can be neglected. To gain insight,

we examined the case where one message is set out to spread on the network initially. In the error-free case

(p = 0), the number of messages is simply one. For p slightly above zero, the number of messages is greater

than one. However, since p is small, a steady state can emerge where the average number of messages on the

network tends to a constant. For large values of p, due to the frequent mutations, the number of distinct mes-

sages can increase with time. This introduces a positive feedback mechanism that generates an increasing

amount of difficulty for agents to distinguish between the true and modified messages. As a result, different

versions of the true message can accumulate in the memories of agents, generating even more distorted

messages, and the number of messages can keep increasing with time, leading to information explosion. In

general, as p is increased from zero and passes through a critical point pc, a phase transition can occur from

steady state to information explosion. Our main result was that this scenario can indeed occur on complex

networks. Another result was with respect to a network’s robustness to information explosion, which can be

measured through the value of pc, where a higher value indicates that the network is more robust. An issue

was whether some control strategy can be derived to increase the network robustness. We demonstrated

a process that controls an agent’s selection of a neighbor to spread the message to, which can be used to

maximize the value of pc. All these were supported by a theoretical analysis of the controlled strategy of

selection and extensive numerical computation.

The results were summarized in the following paper:

1. X.-J. Ma, W.-X. Wang, Y.-C. Lai, and Z.-G. Zheng, “Information explosion on complex networks and

control,” European Journal of Physics B 76, 179-183 (2010).

3.4 Pattern formation, synchronization and outbreak of biodiversity in cyclically competing

games

Biodiversity is ubiquitous in nature and fundamental to evolution in ecosystems. However, a significant chal-

lenge remains in understanding biodiversity since, by the principle of natural selection, only fitter species

are supposed to survive from interactions and competitions with other species for limited resources. To

resolve this dilemma, evolutionary game theory had been proposed as a paradigm to address the coexistence

of competing species, which is the key to biodiversity.

A fundamental type of interactions in ecosystems is cyclic, non-hierarchical competitions. They have

been observed in a plethora of real ecosystems ranging from microbes to mating strategies of side-blotched

lizards in California. A paradigmatic system to study the role of the competitions in biodiversity is the clas-

sical, cyclic game of rock-paper-scissors. One approach is macroscopic in the sense that the mathematical

models are aimed at describing the evolution of the populations of competing species, which are assumed to

be well mixed. In this macroscopic approach, any species is treated as a whole through its population. An

interesting result from this approach is that cyclic competitions alone are not sufficient to support species

coexistence. The ubiquity of the coexistence phenomenon in nature suggests that additional factors must

exist to promote coexistence and, consequently, biodiversity. To identify these additional factors and also

to capture the complex interacting dynamics among individuals of competing species, microscopic game

models incorporating stochastic interactions on spatially extended scales have been exploited with the re-

markable result that, due to stochasticity and local interactions, coexistence can arise even in the presence

of species dispersal. Since then, the role of mobility in coexistence in microscopic game models has been

investigated, where it was found that strong local mobility can cause non-local interactions, which under

certain circumstances tends to hamper coexistence through the formation of moving spiral waves of pop-

ulation densities in the physical space. The roles of epidemic spreading and intra-species competition in
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species coexistence, the basin structures, and competition in continuous physical space, were investigated

by PI’s group (papers #2− 6 in the publication list below). An accepted notion in the field was that strong

mobility is detrimental to biodiversity.

We uncovered a phenomenon that is in sharp contrast to this notion: species migration across vast

spatial scales can in fact promote coexistence. Such movements are indeed common in ecosystems. To

our knowledge, prior to our work, a microscopic understanding of the effect of large-scale migration on

species coexistence had not been available. Since long-distance migrations can be regarded effectively as an

extremely strong type of mobility, according to the conventional wisdom, coexistence would be disfavored

or even prohibited. However, our studies revealed, strikingly, that migration favors coexistence and thereby

promotes biodiversity.

We considered species movements on two distinct spatial scales: intra-patch and inter-patch migration,

and studied microscopic stochastic games by focusing on the formation and the dynamics of self-organized

patterns of species densities. Our microscopic model of inter-patch migration based on stochastic inter-

actions was quite different from the coupled patchy models described by deterministic differential equa-

tions. We showed that the combination of intra- and inter-patch migrations can result in a robust type of

coexistence characterized by the formation of a surprising class of target wave patterns, which had been

found previously in different contexts (e.g., excitable systems). We found that, associated with coexistence,

synchronization and time-lagged synchronization among spatial patterns in different patches can emerge,

implying persistence of coexistence. An appealing feature of time-lagged synchronization is that it can

potentially be used to anticipate the spatiotemporal evolution of species. We also found that the interplay

between the two types of migration can result in a spontaneous outbreak of biodiversity in a world of single

species with rare mutations. We established the robustness of the biodiversity-sustaining target waves with

the aid of a basic concept in nonlinear dynamics: basins of attraction in the phase space. All the results were

demonstrated using systematic simulations of microscopic game dynamics and substantiated by theoretical

analysis based on nonlinear partial differential equations. Our results not only provided insights into the

dynamics of global oscillations induced by long-distance interactions among cyclically competing species,

but also had implications to the emergence of order from randomness and disorder in natural and social

systems through self-organization in the absence of any central control.

The results were published in the following paper:

1. W.-X. Wang, X. Ni, Y.-C. Lai, and C. Grebogi, “Pattern formation, synchronization and outbreak of

biodiversity in cyclically competing games,” Physical Review E 83, 011917(1-9) (2011).

3.5 Predicting catastrophes in nonlinear dynamical systems by compressive sensing

Our basic idea to address the problem of predicting catastrophes in nonlinear dynamical systems can be

described, as follows. We assume that an accurate model of the system is not available, i.e., the system

equations are unknown, but the time evolutions of the key variables of the system can be accessed through

monitoring or measurements. Our method consists of three steps: (i) predicting the dynamical system

based on time series, (ii) identifying the parameters of the system, and (iii) performing bifurcation analysis

using the predicted system equations to locate potential catastrophic events in the parameter space so as to

determine the likelihood of system’s drifting into a catastrophic regime. For example, if the system operates

at a parameter setting close to such a critical bifurcation, catastrophe is imminent as a small parameter

change or a random perturbation can push the system beyond the bifurcation point. Once a complete set

of system equations has been predicted and the parameters have been identified, one needs to examine the

available parameter space. In general, to explore the multi-parameter space of a dynamical system can be

extremely challenging, which can often lead to the discovery of new phenomena in dynamics. The focus of

our work, however, was on predicting the dynamical systems based on compressive sensing.
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Our framework to fully reconstruct dynamical systems using time series alone was based on the as-

sumption that the dynamics of many natural and man-made systems are determined by functions that can

be approximated by series expansions in a suitable base. The major task is then to estimate the coefficients

in the series representation. In general, the number of coefficients to be estimated can be large but many

of them are zero (the sparsity condition). According to the conventional wisdom this would be a difficult

problem as a large amount of data is required and the computations involved can be extremely demanding.

However, the paradigm of compressive sensing developed in 2005-2006 provides a viable solution to the

problem, where the key idea is to reconstruct a sparse signal from small amount of observations, as mea-

sured by linear projections of the original signal on a few predetermined vectors. Since the requirements

for the observations can be considerably relaxed as compared with those associated with conventional sig-

nal reconstruction schemes, compressive sensing has become a powerful technique to obtain high-fidelity

signal for applications where sufficient observations are not available. We articulated a general methodol-

ogy to cast the problems of dynamical-system prediction into the framework of compressive sensing and

we demonstrated the power of our method by carrying out bifurcation analyses on the predicted dynamical

systems to locate potential catastrophes using exemplary chaotic systems.

Generally, the problem of compressive sensing can be described as the reconstruction of a sparse vector

a ∈ Rv from linear measurements X about a in the form: X = G ·a, where X ∈ Rw, G is a w× v matrix and

most components of a are zero. The compressive sensing theory ensures that the number of components of

the unknown signal can be much larger than the number of required measurements for reconstruction, i.e.,

v≫ w. Accurate reconstruction can be achieved by solving the following convex optimization problem:

min‖a‖1 subject to X = G ·a, where ‖a‖1 = ∑v
i=1 |ai| is the L1 norm of a.

We argued that the inverse problem of predicting dynamical systems can be cast in the framework of

compressive sensing so that optimal solutions can be obtained even when the number of base coefficients

to be estimated is large and/or the amount of available data is small. Here, we present a typical example

to illustrate our method. Assume that the dynamical system can generally be written as ẋ = F(x), where

x ∈ Rm represents the set of externally accessible dynamical variables and F is a smooth vector function in

Rm. The jth component of F(x) can be represented as a power series:

[F(x)] j =
n

∑
l1=0

n

∑
l2=0

· · ·
n

∑
lm=0

(a j)l1,··· ,lm · x
l1
1 x

l2
2 · · ·x

lm
m , (4)

where xk (k = 1, · · · ,m) is the kth component of the dynamical variable, and the scalar coefficient of each

product term (a j)l1,··· ,lm ∈ R is to be determined from measurements. Note that the terms in Eq. (4) are all

possible products of different components with different powers, and there are (1+n)m terms in total.

It is useful to focus on one dynamical variable of the system. (Procedures for other variables are similar.)

For example, to construct the measurement vector X and the matrix G for the case of m = 3 (dynamical

variables x, y, and z) and n = 3, we have the following explicit dynamical equation for the first dynamical

variable: [F(x)]1 ≡ (a1)0,0,0x0y0z0 +(a1)1,0,0x1y0z0 + · · ·+(a1)3,3,3x3y3z3. We can denote the coefficients

of [F(x)]1 by a1 = [(a1)0,0,0,(a1)1,0,0, · · · ,(a1)3,3,3]
T . Assuming that measurements of x(t) at a set of time

t1, t2, . . . , tw are available, we denote

g(t) =
[

x(t)0y(t)0z(t)0,x(t)0y(t)0z(t)1, · · · ,x(t)3y(t)3z(t)3
]

,

such that [F(x(t))]1 = g(t) · a1. From the expression of [F(x)]1, we can choose the measurement vector as

X = [ẋ(t1), ẋ(t2), · · · , ẋ(tw)]
T

, which can be calculated from time series. Finally, we obtain the following
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equation in the form X = G ·a1:











ẋ(t1)
ẋ(t2)

...

ẋ(tw)











=











g(t1)
g(t2)

...

g(tw)











(

a1

)

. (5)

To ensure the restricted isometry property, we can normalize G through dividing elements in each column

by the L2 norm of that column: (G′)i j = (G)i j/L2( j) with L2( j) =
√

∑M
i=1[(G)i j]2, so that X = G′ · a′1.

After the normalization, a′1 = a1 ·L2 can be determined via some standard compressive-sensing algorithm.

As a result, the coefficients a1 are given by a′1/L2. To determine the set of power-series coefficients cor-

responding to a different dynamical variable, say y, we can simply replace the measurement vector by

X = [ẏ(t1), ẏ(t2), · · · , ẏ(tw)]
T

and use the same matrix G. This way all coefficients a1, a2, and a3 in three

dimensions can be estimated.

We tested our prediction method using a number of physically relevant models of nonlinear dynamical

systems in both discrete and continuous time, and demonstrated successful prediction of catastrophic bifur-

cations in all cases considered. A merit of our approach is that, due to the nature of the compressive-sensing

method, a large number of terms can be accurately estimated even with short available time series, enabling

potential implementation in real times. Predicting catastrophe is a problem of uttermost importance in sci-

ence and engineering and of extremely broad interest as well, and our work represented a step forward in

this area.

Details of this work can be found in

• W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi, “Predicting catastrophes in nonlinear

dynamical systems by compressive sensing,” Physical Review Letters 106, 154101, 1-4 (2011).

3.6 Time-series based prediction of complex oscillator networks via compressive sensing

Based on our work on predicting catastrophes nonlinear dynamical systems, we developed a framework that

enables a full reconstruction of coupled oscillator networks whose vector field consists of a limited number

of terms in some suitable base of expansion. The basic idea is that the mathematical functions determining

the dynamical couplings in a physical network can be expressed as power-series expansions. The task is

then to estimate all the nonzero coefficients. Since the underlying coupling functions are unknown, the

power series can contain high-order terms. The number of coefficients to be estimated can therefore be quite

large. However, the number of nonzero coefficients may be only a few so that the vector of coefficients is

effectively sparse, rendering applicable compressive sensing.

Extensive computations revealed that both nonlinear nodal dynamics and node-to-node interactions can

be accurately predicted, leading to reliable and robust reconstruction of the underlying networked system, as

characterized by near-zero prediction errors, regardless of the nature of the nodal dynamics and the network

structure. Although all the examples of nodal dynamics tested were polynomial vector fields, we examined

other expansion bases such as trigonometric functions. If the prediction base is sufficiently wide to include

all terms in the system equations as a small subset, high-accuracy prediction can be guaranteed, regardless

of the mathematical forms of the terms in the equations. These features make our method appealing to

predicting general complex networked systems with low data requirement.

This work was published as

• W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and M. A. F. Harrison, “Time-series based prediction of

complex oscillator networks via compressive sensing,” Europhysics Letters 94, 48006, 1-6 (2011).
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3.7 Reconstruction of social networks based on evolutionary-game data via compressive

sensing

Evolutionary games are a common type interactions in a variety of complex, networked, natural and so-

cial systems. Given such a system, uncovering the interacting structure of the underlying network is key

to understanding its collective dynamics. We articulated a general method to address the problem of un-

covering network topology using evolutionary-game data based on compressive sensing. Although we had

demonstrated that convex optimization, the essence of compressive sensing, can be used to construct cou-

pled oscillator networks, we showed the advantage of compressive sensing, such as low data requirement,

in solving the general inverse problem of network reconstruction based on either continuous or discrete

data. In particular, in a typical game, agents use different strategies in order to gain the maximum pay-

off. The strategies can be divided into two types: cooperation and defection. We showed that, even when

the available information about each agent’s strategy and payoff is limited, our compressive-sensing based

method can yield precise knowledge of the node-to-node interaction patterns in a highly efficient manner.

We validated our method through (1) extensive numerical computations using model complex networks and

evolutionary games, and (2) an actual social experiment in which participants forming a friendship network

played a typical game to generate short sequences of strategy and payoff data. The high prediction accuracy

achieved and the unique requirement of extremely small data set made our method appealing to potential

applications to reveal “hidden” networks embedded in various social, economic and biological systems.

The mathematical formulation of our method is as follows. In an evolutionary game, at any time a

player can choose one of two strategies S: cooperation (C) or defection (D), which can be expressed as

S(C) = (1,0)T and S(D) = (0,1)T . The payoffs of two players in a game is determined by their strategies

and the payoff matrix of the specific game. For example, for the prisoner’s dilemma game (PDG) and the

snowdrift games (SG), the payoff matrices are

PPDG =

(

1 0

b 0

)

or PSG =

(

1 1− r

1+ r 0

)

, (6)

where b (1 < b < 2) and r (0 < r < 1) are parameters characterizing the temptation to defect. When a

defector encounters a cooperator, the defector gains payoff b in the PDG and payoff 1+ r in the SG, but the

cooperator gains the sucker payoff 0 in the PDG and payoff 1− r in the SG. At each time step, all agents

play the game with their neighbors and gain payoffs. For agent i, the payoff is

Gi = ∑
j∈Γi

ST
i PS j, (7)

where Si and S j denote the strategies of agents i and j at the time and the sum is over the neighboring set

Γi of i. After obtaining its payoff, an agent updates its strategy according to its own and neighbors’ payoffs,

attempting to maximize its payoff at the next round. Possible mathematical rules to capture an agent’s deci-

sion making process include the best-take-over rule, the Fermi equation, and payoff-difference-determined

updating probability. To be concrete, we used the Fermi rule in our simulations of evolutionary-game dy-

namics and generated time series accordingly, which is defined, as follows. After a player i randomly

chooses a neighbor j, i adopts j’s status S j with the probability:

W (Si← S j) =
1

1+ exp [(Gi−G j)/κ]
, (8)

where κ characterizes the stochastic uncertainties in the game dynamics. For example, κ = 0 corresponds

to absolute rationality where the probability is zero if G j < Gi and one if Gi < G j, and κ→ ∞ corresponds

to completely random decision. The probability W thus characterizes the bounded rationality of agents in

society and natural selection based on relative fitness in evolution.
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The key to solving the network-reconstruction problem lies in the relationship between agents’ payoffs

and strategies. The interactions among agents in the network can be characterized by an N×N adjacency

matrix A with elements ai j = 1 if agents i and j are connected and ai j = 0 otherwise. The payoff of agent x

can be written as

Gx(t) = ax1ST
x (t) ·P ·S1(t)+ · · ·+ax,x−1ST

x (t) ·P ·Sx−1(t)+ax,x+1ST
x (t) ·P ·Sx+1(t)+ · · ·+axNST

x (t) ·P ·SN(t),
(9)

where axi (i = 1, · · · ,x−1,x+1, · · · ,N) represents a possible connection between agent x and its neighbor i,

axiS
T
x (t) ·P ·Si(t) (i = 1, · · · ,x−1,x+1, · · · ,N) stands for the possible payoff of agent x from playing game

with i (if there is no connection between x and i, the payoff is zero because axi = 0), and t = 1, · · · ,m is the

number of round that all agents play the game with their neighbors. This relation provides us with a base to

construct the measurement vector and the transform matrix in a proper compressive-sensing framework to

obtain solution of the neighboring vector Ax of agent x. In particular, we can write

Gx = (Gx(t1),Gx(t2), · · · ,Gx(tm))
T ,

Ax = (ax1, · · · ,ax,x−1,ax,x+1, · · · ,axN)
T , (10)

and σx =











Fx1(t1) · · · Fx,x−1(t1) Fx,x+1(t1) · · · FxN(t1)
Fx1(t2) · · · Fx,x−1(t2) Fx,x+1(t2) · · · FxN(t2)

... · · ·
...

...
...

...

Fx1(tm) · · · Fx,x−1(tm) Fx,x+1(tm) · · · FxN(tm)











,

where Fxy(ti) = ST
x (ti) ·P ·Sy(ti). The vectors Gx, Ax and the matrix σx satisfy

Gx = σx ·Ax, (11)

where Ax is sparse due to the sparsity of the underlying complex network, making the compressive-sensing

framework applicable. Since ST
x (ti) and Sy(ti) in Fxy(ti) come from data and P is known, the vector Gx can

be obtained directly while the matrix σx can be calculated from the strategy and payoff data. The vector Ax

can thus be predicted based solely on the time series. Since the self-interaction term axx is not included in

the vector Ax and the self-column [Fxx(t1), · · · ,Fxx(tm)]
T is excluded from the matrix σx, the computation

required for compressive sensing can be reduced. In a similar fashion, the neighboring vectors of all other

agents can be predicted, yielding the network adjacency matrix A = (A1,A2, · · · ,AN).

We validated our method using model complex networks of different topologies. We also conducted an

experiment to reconstruct a real friendship network. In the experiment, 22 participants from Arizona State

University played PDG together iteratively and, at each round each player was allowed to change his/her

strategies to optimize the payoff. The payoff parameter was set (arbitrarily) to be b = 1.2. The player who

had the highest normalized payoff (original payoff divided by the number of neighbors) summed over time

was the winner and rewarded. During the experiment, each player was allowed to communicate only with

his/her direct neighbors for strategy updating. Prior to experiment, there was a social tie (link) between two

players if they had already been acquainted to each other; otherwise there was no link. Among the 22 players,

two withdrew before the experiment was completed, so they were treated as isolated nodes. The network

structure is illustrated in Fig. 1(a). It exhibits typical features of a social network, such as the appearance

of dense triangles and a core consisting of 4 players (nodes 5, 11, 13, and 16), which is fully connected

within and has more links than other nodes in the network. The core essentially consists of players who

were responsible for recruiting other players to participate in the experiment. Each of the 20 players who

completed the experiment played 31 rounds of games, and he/she recorded his/her own strategy and payoff
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Figure 1: Detection of a hidden node

from a real social network. (a) Structure

of experimental social network. (b) Suc-

cess rates of uncovering the network topol-

ogy and (c) normalized payoff of player

as a function of node degrees. The 10 in-

dependent realizations used in calculating

the average success rates were randomly

chosen from the data base of 31 rounds of

games.

at each time, which represented the available data base for prediction. The data used for each prediction

run was randomly picked from this data base. The pre-existed friendship ties among the participants tend to

favor cooperation and preclude the system from being trapped in the social dilemma, due to the relatively

short data streams. However, for a long run, a full defection state may occur. In this sense, the recorded

data were taken during the transient dynamical phase and thus suitable for network reconstruction. The

results are shown in Fig. 1(b). We see that the social network can be successfully uncovered, despite the

complicated process of individual’s decision making during the experiment.

An interesting phenomenon was that the winner picked in terms of the normalized payoff had only

two neighbors, in contrast to the players with the largest node degree, whose normalized payoffs were

approximately at the average level, as shown in Fig. 1(c). In addition, the payoffs of players of smaller

degrees were highly non-uniform, while those of higher degrees showed smaller difference. This suggests

that players of high degree may not act as leaders due to their average normalized payoffs. We also observed

from experimental data that a typical player with a large number of neighbors failed to stimulate their

neighbors to follow his/her strategies, suggesting that hubs may not be as influential in social networks.

However, this finding should not be interpreted as a counter-example to the leader’s role in evolutionary

games, since the network based on friendship ties may violate the absolute selfish assumption of players

who tend to be reciprocal with each other.

For all cases of networks hosting evolutionary-game dynamics that we considered, as the number of

data points exceeds a low critical value depending on the sparsity of the underlying network, the prediction

errors approach zero rapidly, without or with noise in the data. To our knowledge, no previous method could

match our method in terms of the accuracy and efficiency, with only small set of discrete data. Our method,

besides being fully applicable to complex networks governed by evolutionary-game type of interactions,

can be applied to other contexts where the dynamical processes are discrete in time and the amount of

available data is small. For example, inferring gene regulatory networks from sparse experimental data is a

problem of paramount importance in systems biology. For such an application, Eq. (1) should be replaced

by the Hill equation that models generic interactions among genes. In an expansion using base functions

specifically suited for gene regulatory interactions, a compressive-sensing framework may be established.

The underlying reverse-engineering problem can then be solved. A challenge that must be overcome is to
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represent the Hill function by an appropriate mathematical expansion so that the sparsity requirement for

compressive sensing can be met.

The details of this work can be found in the following paper:

• W.-X. Wang, Y.-C. Lai, C. Grebogi, and J.-P. Ye, “Network reconstruction based on evolutionary-

game data via compressive sensing,” Physical Review X 1, 021021, 1-7 (2011).

3.8 Optimizing controllability of complex networks by minimum structural perturbations

The ability to control complex networks is utter-mostly important to many critical problems in science, en-

gineering and medicine, and has the potential to generate great technological breakthroughs as well. Indeed,

because of the ubiquity of complex networks in natural, technological, social, and economical systems, it

is highly desirable to be able to apply proper control to guide the network dynamics toward states with the

best performance and, at the same time, to avoid undesired or deleterious states. While actual control of

complex networks has not been achieved at the present, a necessary step is to understand the controllability

of complex networks, which has become a topic of active pursuit. Specifically, given a complex-networked

dynamical system, one wishes to assess whether it would be possible to apply certain number of control

signals at an arbitrary set of nodes so as to drive the system toward some desirable state. The number of

control signals, ND, is thus a key quantity of interest as, qualitatively, it characterizes the cost to bring the

system under control.

We started research on controllability of complex networks in 2011. The first question we asked was:

given an arbitrary network that requires a certain number of signals to be controlled, can one perturb the

network structure slightly so as to achieve the optimal controllability characterized by ND = 1? The theo-

retical framework under which this question may be addressed is the minimum-input theory developed to

characterize the controllability of networks with linear dynamics, which is based on classical control and

graph theories. The basic goal of the minimum-input theory is to determine the minimum number of nodes

to be driven externally to bring the whole network under control. According to this theory, only topologi-

cal changes can alter the network controllability. To be illustrative, we investigated structural perturbation

through adding links to the network to enhance its controllability. It is practically important to develop a

paradigm that minimizes the number of added links to achieve ND = 1; for otherwise optimal controllability

can be achieved trivially by keeping adding links to the network until it becomes fully connected, which

according to the minimum-input theory is fully controllable with a single input. Guided by this general con-

sideration, we articulated a strategy to perturb the network by providing a minimum number of additional

links at suitable locations determined by certain criterion. The performance of our perturbation scheme was

compared with that in the case where links are randomly added to the network. Our optimization strategy

bridged the network topology and controllability by providing useful insights into the effect of the former

on the latter.

A detailed description of our structural perturbation strategy to optimize network controllability is as

follows. According to Kalman’s controllability rank condition, a canonical, linear, and time-invariant dy-

namical system, ẋ(t) = Ax(t)+Bu(t), can be controlled from any initial state to any desired state in finite

time, if and only if the N×NM controllability matrix C has full rank, i.e.,

rank(C)≡ rank
[

B,AB,A2B, · · · ,AN−1B
]

= N (12)

where x ∈ RN , B is the N×M input matrix, M is the number of driver nodes, and u(t) is a time-dependent

input control vector. The full-rank condition (12) is appropriate for characterizing the controllability of

network systems if A is the transpose of the adjacency matrix and N is the number of nodes. Of particular

importance to our perturbation strategy is the concept of structural controllability, which can be used to
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Figure 2: Optimizing controllability of

complex networks via structural pertur-

bation. (a) A network of 30 nodes with

heterogeneous degree distribution, gener-

ated according to the preferential attach-

ment mechanism. (b) All matching paths

in order, starting from node 10 outside

and ending at node 29 inside. The links

of the set of maximum matching and the

matched nodes are marked by green (gray).

Structural perturbations are represented by

the added links connecting the tail of a

matching path in higher order to the head

(black color) of a matching path in lower

order, which are marked by red (dark gray).

Other links are marked by light gray. The

configuration of added links is not unique,

but their minimum number is.

identify the minimum number ND of driver nodes required for the system to satisfy the full-rank condition

(12). However, it is practically difficult to check this condition for large complex networks, as the number

of input combinations grows exponentially with the number of nodes (∼ 2N). To overcome this difficulty,

the Barabasi group proposed the concept of maximum-matching set to assess and quantify structural con-

trollability. A key result is ND = 1 if the network is perfectly matched; otherwise ND = N −NM, where

NM is the size of the maximum-matching set, i.e., the maximum set of links that do not share starting or

ending nodes. The Barabasi group demonstrated that many real-world networks are far from being perfectly

matched. Consequently, in order to fully control such a network, a large number of input signals applied to

an equally large number of nodes are necessary. This motivated us to ask whether optimal control ND = 1

is achievable by making deliberate, small structural perturbations to the network. We found that, given any

network, a minimum number of links can indeed be added so that all nodes except one are matched. That

is, under only one input control signal the perturbed network would meet the full-rank condition.

We formulated our strategy to optimize network controllability by adding minimum number of addi-

tional links for both directional and bidirectional networks. To explain our strategy, we introduced the

concept of “matching path,” a subset of links in the set of maximum matching (or “isolated” nodes), which

can be (i) starting from an unmatched node and ending at a matched node without outgoing link belonging

to the set of maximum matching, (ii) starting from an arbitrary node in a directed loop and ending at the

“superior” node that points at the starting node, or (iii) an “isolated” node without any link belonging to the

set of maximum matching. Here, case (ii) defines a “close matching path.”

Our optimization process involves three steps: (1) finding the minimum number of independent match-

ing paths, except close matching paths; (2) randomly ordering all found matching paths; (3) linking the

ending points of each matching path to the starting nodes of the matching paths next to it in order, as illus-

trated in Fig. 2. The minimum number of independent matching paths, except close matching paths, is equal

to one less than the number ND of unmatched nodes. Applying such structural perturbations, the maximum

fraction mmax of added links (m is the ratio of the number of added links to the number Nl of links in the

original network) to achieve ND = 1 is

mmax =
ND−1

Nl

. (13)

If one external signal can control multiple drivers, the network will be fully controllable with a single

controller imposed at the starting node of the first matching path and any one node in each of other close
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matching paths simultaneously. We proved, according to the classical structural controllability theory, that

the optimal network resulted from the above structural perturbations satisfies the full-rank condition with a

single input. The value of ND can always be reduced to 1 by adding a minimum number of links.

In general, our method is applicable to networks for which establishing a link costs less than imposing

a time-variant controller at a node, such as many technological and social networks. However, there are

networks in the real world for which the opposite is true, such as gene regulatory networks, where to establish

a new regulatory connection between genes may be more difficult than exogenously altering the expression

of a gene. For such networks, our optimization method is not meaningful; alternative ways to enhance the

network controllability must be explored. In addition, the issue of trade-off between network robustness in

response to failures/attacks and lower control cost with less controllers can be critical.

The details can be found in the following paper:

• W.-X. Wang, X. Ni, Y.-C. Lai, and C. Grebogi, “Optimizing controllability of complex networks by

small structural perturbations,” Physical Review E 85, 026115, 1-5 (2012).

3.9 Detecting hidden nodes in complex networks from time series based on compressive

sensing

When dealing with an unknown complex system that has a large number of interacting components orga-

nized hierarchically, curiosity demands that we ask the following question: are there hidden objects that are

not accessible from the external world? The problem of inferring the existence of hidden objects from obser-

vations is quite challenging but it has significant applications in many disciplines of science and engineering.

Here by “hidden” we mean that no direct observation of or information about the object is available, and so

it appears to the outside world as a black box. However, due to the interactions between the hidden object

and other observable components in the system, it may be possible to utilize “indirect” information to infer

the existence of the hidden object and to locate its position with respect to objects that can be observed.

The paradigm of compressive sensing aims to reconstruct a sparse vector a ∈ R
N from linear measure-

ments M in the form M = G ·a, where M ∈ R
K and G is an K×N matrix. The compressive sensing theory

guarantees that, when most components in the unknown vector a are zero, it can be reconstructed by fewer

measurements than the number of components. The unknown vector a can be solved, for example, by a

convex optimization procedure based on L1 norm. Our work demonstrated that the problem of data-based

network reconstruction can be casted into the form of M = G ·a.

We considered networked systems for which the nodal dynamics, described by the vector function Fi(xi),
can be separated from the interactions or coupling with other nodes in the network, mathematically described

by the coupling function Hi j(xi,x j). The system can then be written as Mi = Fi(xi)+∑N
j 6=i wi jHi j(xi,x j),

where Mi is the system response, either in discrete or continuous time. For example, for discrete-time

mapping system, Mi are the state variables at the next time step, while in continuous system Mi are the

derivatives of the corresponding variables. To illustrate our method to detect hidden nodes in a concrete

manner, we assumed that the nodal and coupling functions can be written as some series expansion, e.g.,

power or Fourier series. In particular, we wrote: Fi(xi) = ∑γ ã
(γ)
i g̃

(γ)
i (xi) and Hi j(xi,x j) = ∑β a

(β)
i j g

(β)
i j (xi,x j),

where g̃
(γ)
i are the expansion bases associated with xi only, and g

(β)
i j are with respect to both xi and x j. Next

we combined the bases g̃i(t) and gi j(t) at time t into a row vector, and the coefficients a
(α)
i and a

(β)
i j into a

constant column vector. The time-series vector of responses Mi(t) for node i can then be expressed by the
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Figure 3: Detection of a hidden node. (a) Illus-

tration of a complex network with a hidden node.

(b) Representation of the true adjacency matrix,

(c) reconstructed adjacency matrix elements for

nodes except the hidden node based on time series

from these nodes. (d) Variance σ2 of the recon-

structed coefficient vector a for all nodes, calcu-

lated by using 10 different random segments from

the available experimental time series. The vari-

ances of the two green nodes (No. 9 and No. 18)

are much larger than those of the red nodes, in-

dicating that they are the neighbors of the hidden

node.

product of the matrix Gi and the to-be-determined coefficient vector ai, with Gi given by

Gi =











g̃i(t1) gi1(t1) · · · gi j(t1) · · · giN(t1)
g̃i(t2) gi1(t2) · · · gi j(t2) · · · giN(t2)

...
... · · ·

... · · ·
...

g̃i(tm) gi1(tm) · · · gi j(tm) · · · giN(tm)











, (14)

where g̃i(t) is the set of bases of Fi(xi), and gi j(t) is the set of expansion bases of Hi j(xi,x j). Elements in

the vector Mi(t) contain system response mi(t) at different t. In particular, when the vector ai is determined

via solving M = G · a, the dynamical equations for the set of corresponding variables at all nodes become

known. Note that the vector ai contains all the coupling weights from other nodes to i as in gi j(t) and the

complete information about the nodal dynamical equations as in g̃i(t). Our earlier works had demonstrated

that solutions to the compressive sensing problem can be obtained but only when time series from all nodes

are available, i.e., when there is no hidden object.

To devise a compressive-sensing based methodology for detecting hidden nodes, we considered the case

of one hidden node (or one cluster of hidden nodes). Let node i be one of the immediate neighbors of the

hidden node. Due to lack of time series from the hidden node, the form M = G · a is violated for node i,

despite the available time series from other nodes in the network. That is, due to the missing time series from

the hidden node and consequently missing elements in a, it is not possible to obtain the true solution of the

dynamical equations of node i. If a node does not neighbor any hidden node, time series from itself and all its

direct neighbors are available, rendering valid the form M = G ·a for such a node. The practical importance

is that the errors in the prediction of the dynamics of the immediate neighbors of the hidden node will be
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much larger than those associated with nodes that do not have any hidden node in their neighborhoods. The

predicted characteristics of all neighboring nodes of the hidden node will then show significant anomalies

as compared with those of other nodes. The anomalies can be used to identify all nearest neighbors of the

hidden node, which in turn imply its existence and its position in the network.

While our general idea of detecting hidden nodes can be formulated using different types of dynamical

systems, to be concrete we describe here how this can be done using evolutionary-game type of dynamics.

Such dynamical processes can be used to model generic agent-to-agent interactions in economical, social,

or even certain biological networks. In an evolutionary-game system, the neighbors of the hidden node can

be identified by utilizing the stability criterion with respect to different measurements. More specifically,

in an evolutionary-game system, at any time a player can take on one of two strategies: cooperation (C) or

defection (D), mathematically represented as S(C) = (1,0)T and S(D) = (0,1)T , respectively. The payoffs

of the two players in a game are determined by their strategies and the payoff matrix P. For example, for the

classical prisoner’s dilemma game (PDG), the matrix elements are P11 = 0, P12 = 0, P21 = b, and P22 = 0,

where 1 < b < 2 is a parameter characterizing the temptation to defect. At each time step, all agents in

the network play the game with their neighbors simultaneously and gain rewards. For agent i, the reward

is mi = ∑ j ai jS
T
i PS j, where Si and S j denote the strategies of agents i and j taken at the time and ai j is

the coupling strength between them. After obtaining its payoff, an agent updates its strategy according

to its own and neighbors’ payoffs, attempting to maximize its payoff at the next round. We assumed that

the strategy and payoff data of agents are available except those of the hidden node. In particular, we

chose gi j(t) = ST
i (t) ·P ·S j(t) and ignore g̃i. The payoff of node i at different time t can be expressed as

Mi(t) = Gi · ai, where Gi is to be constructed as specified in Eq. (14), and the vector ai to be determined

contains all interaction strength between nodes i and other accessible nodes in the network. The network

structure is uncovered after a’s for all nodes are determined.

As an example, we obtained results of experimentally detecting a hidden node from a social network

hosting evolutionary-game dynamics. In the experiment, 20 participants from Arizona State University

played the PDG iteratively, with a pre-specified payoff parameter. The player with the highest normalized

payoff (total payoffs normalized by their degrees) summed over time was the winner. The players can

gamble with all their nearest neighbors in the pre-existing social network [Fig. 3(a)]. The network was

determined by surveying the friendships among those participants, and it exhibits some typical properties of

real social network, such as the much larger degree in some hub nodes. During the experiment, the strategies

of each player and the gained payoff were recorded in all 32 rounds, except for the hidden node No. 20. The

true adjacency matrix of the accessible nodes is represented in Fig. 3(b), and the predicted matrix is shown

in Fig. 3(c). We see that the links of the two neighboring nodes (No. 9 and No. 18) of the hidden node No. 20

cannot be reliably predicted. Especially, the two nodes are predicted to have links with almost all nodes in

the network, which is highly unlikely for a random network that is typically sparse. While the predicted loss

of sparsity of certain nodes is an indication that they might be in the neighborhood of some hidden node,

the condition is not sufficient in general, because of the existence of hub nodes with significantly more links

than average in a complex network. Other conditions must then be sought in order to identify the neighbors

of the hidden nodes. Our idea was to exploit the stability of the predicted solution with respect to different

measurements used for compressive sensing. In particular, for the neighboring nodes of the hidden node,

due to the lack of information needed to solve the underlying compressive-sensing problem, when different

segments of the time series are used, the algorithm will yield different coefficient vectors a. However, for

a node not in the immediate neighborhood of the hidden node, the predicted vector a should be the same

for different data segments, since the corresponding coefficients with the hidden node are zero. As shown

in Fig. 3(d), the variances in a of nodes No. 9 and No. 18 from a number of predictions are much larger

than those (essentially zero) of other nodes. Violation of sparsity in combination with the instability of the

predicted solution then allows us to identify all neighbors of the hidden node, and consequently itself, with
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high confidence.

Details of this work can be found in

• R.-Q. Su, W.-X. Wang, and Y.-C. Lai, “Detecting hidden nodes in complex networks from time series,”

Physical Review E (Rapid Communication) 85, 065201(R), 1-4 (2012).

3.10 Forecasting synchronizability of complex networks from data

The most amazing feature of a complex dynamical system consisting of a large number of interacting units

(or components) is the emergence of collective dynamics. Indeed, it is this feature of “more is different”

which makes complex systems extremely interesting and the study of collective dynamics fundamentally

important to many natural and technological systems. Given a complex system, if the underlying mathe-

matical rules or equations are completely known, then in principle the possible types of collective dynamics

in the system can be predicted and studied, and most existing works on complex systems are of this nature.

In realistic applications one may encounter the situation where, for a complex system of interest, the local

system equations and the interactions among the components are not known a priori but only a set of time

series are available. Can one still forecast or anticipate whether a certain type of collective dynamics can

potentially occur in the system?

Even when the system equations of a complex system are known, it is still extremely challenging to

predict, investigate, and exploit the emergence and evolution of collective dynamics. In order to address the

issue of time-series based prediction of collective dynamics, it is useful to focus on a relatively well known

class of such dynamics. Specifically, we studied coupled-oscillator networks, a paradigm for probing and

understanding the synchronous behavior of interacting units with nonlinear dynamics. When the system

equations are known, a widely used tool to determine whether synchronization can emerge physically is

the master-stability function (MSF). In the MSF framework, synchronization under various combinations

of network structures and oscillator dynamics can be predicted. For example, given the nodal dynamical

equations, possible states of synchronization can be determined, which are basically the possible dynamics

on the synchronization manifold. The MSF is nothing but the largest Lyapunov exponent characterizing the

transverse stability of the synchronous dynamical state. For a typical nonlinear or chaotic oscillator, our

previous research revealed that there may exist an open interval in the space of some generalized coupling

parameter, where the MSF is negative so that any point in this interval can lead to stable synchronization.

When the network structure is given, the set of eigenvalues of the underlying coupling matrix can be deter-

mined. For a network of coupled oscillators, the phase-space dimension can be extremely high, so there can

be many transverse subspaces. The set of eigenvalues, after suitable normalization, gives the set of effective

generalized coupling parameters associated with all the transverse subspaces. Network synchronization can

occur only when all these parameters fall into the interval of negative MSF.

We proposed a general approach to forecasting the emergence of synchronization in complex oscillator

networks based on time series. The specific setting of the problem is, as follows. Assume that at the time

of interest the oscillator network is in an asynchronous state and time series from each node in the network

can be obtained. Assume further that there exists a parameter characterizing the average coupling strength

among the nodes. The question we asked was whether it would be possible to predict that synchronization

can or cannot occur when the coupling parameter is allowed to change. Our method consists of two steps.

First, we reconstructed the full topology of the network, together with the coupling strengths and the nodal

dynamics, based solely on time series. This is accomplished by casting the prediction or reverse-engineering

problem into the framework of compressive sensing. Here the relevant vector to be reconstructed originated

from both nodal dynamics and topology, which is typically sparse due to the sparsity of complex networks.

Second, from the predicted nodal dynamics and network structure, we performed synchronizability analysis

by using the standard MSF approach. We validated our method by using random weighted networks of
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both continuous-time and discrete-time chaotic systems (e.g., the classical Lorenz system and Hénon map.

Our computation and analysis indicated that with only small amount of measured data, the synchronization

regions in the parameter space as identified by MSF and the network structure can be accurately predicted,

rendering possible inference of synchronous dynamics. The critical data requirement and sampling fre-

quency for different network sizes and degree distributions were studied in detail. The issue of the effect of

measurement noise on prediction accuracy was addressed. In addition, the dependence of data requirement

and computational time on the network size were studied.

One potential application of our prediction method is to control coupled oscillators to bring the system

to synchronization. The base of control is prediction of future behavior by decoding the available time

series at the present. If the natural dynamics in the future are undesirable, one can implement certain

control scheme to drive the system to avoid the undesirable state before it emerges. This, however, requires

relatively complete knowledge about the networked dynamical system, which can be achieved by exploiting

the compressive-sensing paradigm. Consider the situation where synchronization is a desirable state of

operation for the system, assuming that the system is not synchronized at the present. The first step is to

determine, from currently available time series, whether synchronization is intrinsically likely to emerge. An

answer can be obtained by using the reconstructed network structure and dynamics to estimate the network

eigenvalue spectrum and MSF. The answer can be affirmative, for example, if the MSF is predicted to be

negative in an open generalized coupling-parameter interval. That the system is not currently synchronized

indicates that the normalized eigenvalue spectrum does not fall into the interval and, hence, suitable control

can be applied to rescale and shift the eigenvalue spectrum into the negative MSF interval. To illustrate

this method, we used the network system of coupled chaotic Lorenz oscillators. Figure 4(a) shows some

representative time series in a case where the network is not synchronized, and the corresponding MSF

and eigenvalue spectrum calculated from the reconstructed network structure and dynamics are shown in

Fig. 4(c). It can be seen that some values of coupling parameter K [data points in Fig. 4(c)], the product

between the coupling strength ξ and eigenvalues µ, are not located in the synchronizable region as indicated

by the MSF [curve in Fig. 4(c)]. Thus, at the current parameter setting, synchronization cannot be realized

in the system. In order for synchronization to emerge, all K values must fall into a region where the MSF is

negative. A simple and practical way to manipulate K is to adjust the coupling strength but to keep the nodal

dynamics and network structure unchanged. When the coupling strength ξ is modified, the network system

can indeed achieve synchronization, as shown by the synchronous time times in Fig. 4(b). Examination of

the MSF and eigenvalue spectrum indicated that, indeed, in this case all K values fall into the negative MSF

interval. It should be emphasized that a prerequisite to this simple control scheme is full knowledge of the

network structure and dynamics which, as we demonstrated, can be faithfully reconstructed based solely on

small amount of data.

Details of this work can be found in

• R.-Q. Su, X. Ni, W.-X. Wang, and Y.-C. Lai, “Forecasting synchronizability of complex networks

from data,” Physical Review E 85, 056220, 1-11 (2012).

3.11 Emergence of grouping in multi-resource minority game dynamics

The Minority Game (MG) was originated from the El Farol bar problem in game theory first conceived by

Arthur in 1994, where a finite population of people try to decide, at the same time, whether to go to the bar

on a particular night. Since the capacity of the bar is limited, it can only accommodate a small fraction of all

who are interested. If many people choose to go to the bar, it will be crowded, depriving the people of the

fun and thereby defying the purpose of going to the bar. In this case, those who choose to stay home are the

winners. However, if many people decide to stay at home then the bar will be empty, so those who choose

to go to the bar will have fun and they are the winners. Apparently, no matter what method each person uses
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Figure 4: Optimizing synchronizability

of complex networks via prediction and

control. (a,b) Time series from 10 of the

N = 30 nodes in two random networks of

global coupling strength ξ= 1 and ξ = 1.6,

respectively. The network is not synchro-

nized in (a) but there is synchronization in

(b). Other parameters are the same for both

bases: connection probability p = 0.2 and

the weight distribution interval is [0.9,1.0].
(c,d) Rescaled eigenvalues Ki(= ξµi) (de-

noted by open circles) of the network cou-

pling matrices with respect to the MSF

(denoted by solid lines) inferred from the

same nodal dynamics and coupling scheme

from the time series in (a,b), respectively.

to make a decision, the option taken by majority of people is guaranteed to fail and the winners are those

that choose the minority strategy. Indeed, it can be proved that, for the El Farol bar problem there are mixed

strategies and a Nash-equilibrium solution does exist in which the option taken by minority wins. A variant

of the problem was subsequently proposed by Challet and Zhang, where a player among an odd number of

players chooses one of the two options at each time step. Subsequently, the model was studied in a series

of works. In physics, MG has received a great deal of attention from the statistical-mechanics community,

especially in terms of problems associated with non-equilibrium phase transitions.

In the literature, the setting of MG is that there is a single resource but players have two possible strate-

gies (e.g., in the El Farol bar problem there is a single bar and the two strategies are going to the bar or

staying at home), and an agent is assumed to react to available global information about the history of the

system by taking on an alternative strategy that is different than its current one. An outstanding problem con-

cerned about the nonlinear dynamics of MG with multiple resources. We developed a class of multi-resource

MG models. In particular, we assumed that, at any time, an individual agent has k > 1 resources/strategies

to choose from. We introduced a parameter p, which is the probability that each agent reacts based on the

available local information by selecting a less crowded resource in an attempt to gain higher payoff. We

assumed realistically that only local information about the immediately preceding step is available, which

constitutes the input to the model. This differs from the original MG model where global information is

assumed to be available to all the agents and they make actions based on the past history. Letting p be

the minority-preference probability, we found that, as p is increased, the striking phenomenon of grouping

emerges, where the resources can be distinctly divided into two groups according to the number of their at-

tendees. In addition, the number of stable pairs of groups also increases. We demonstrated the phenomenon

numerically and derived an analytic theory to fully explain the phenomenon. We also showed that the group-

ing phenomenon plays a fundamental role in shaping the fluctuations of the system. An application to a real

financial-market system by analyzing the available empirical data was also demonstrated, where grouping

of stocks (resources) emerges. Our model is not only directly relevant to nonlinear and complex dynamical

systems, but also applicable to social and economical systems.

The bifurcation-like phenomena associated with resource grouping in minority-game systems are not

limited to the double-grouping (or paired grouping) behavior. In fact, we also observed phenomena such as

period−3 double-grouping and period−3 triplet-grouping bifurcation. Further efforts are justified to explore

various nonlinear dynamical phenomena in minority-game type of systems that describe a large variety of

social, economical, and political systems.

Details of this work can be found in
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• Z.-G. Huang, J.-Q. Zhang, J.-W. Dong, L. Huang, and Y.-C. Lai, “Emergence of grouping in multi-

resource minority game dynamics,” Nature Scientific Reports 2, 703, 1-8 (2012).

3.12 Optimizing cooperation on complex networks in the presence of failure

Natural selection favors the survival and prevalence of species with competitive edge, yet the phenomenon

of cooperation is ubiquitous in many biological, economical, and social systems. Understanding the emer-

gence and evolution of cooperation has thus become a field of significant interdisciplinary interest, where

evolutionary-game theory has served as a powerful mathematical paradigm. In a typical setting, a number

of agents on a network interact with one another, where the network topology can be regular or complex,

and each agent can take on one of the two strategies at any given time: cooperation or defection. The de-

fection strategy is a selfish action that usually generates higher payoff temporally, as in paradigmatic games

such as the PDGs, the snowdrift games (SGs), and the public goods games (PGGs). A basic issue is then

how cooperation can possibly survive when natural selection favors the defection strategy in order to gain

higher individual fitness (at least temporally). In the past two decades, many cooperation-facilitating mech-

anisms were uncovered, which include network reciprocity, reputation and punishment, random diffusion,

success-driven migration, memory effect, benefit of noise, social diversity, asymmetric cost, and teaching

ability.

In most previous works, no death mechanism was incorporated in the evolutionary-game model on net-

works, i.e., no agent can be removed from the system, even if it gains no payoff in a substantial amount of

time. In real-world situations, an agent can go bankrupt and be eliminated immediately when its payoff falls

below a critical threshold for certain period of time. An example is the great economical recession in 2008,

where a large number of financial institutions and corporations collapsed. In an ecological system, death of

individuals is a common phenomenon. In this regard, our previous work incorporated a simple elimination

mechanism into the evolutionary-game rules. In particular, a tolerance parameter was assigned to each indi-

vidual in the network, which is the lowest allowed payoff. An agent dies and is removed from the network

when its payoff falls below this threshold. The threshold can be heterogeneously distributed among agents.

It had been shown that rapid, cascading-like elimination of agents can result from such a death mechanism,

and a pure cooperation state can emerge afterwards, where all defectors are eliminated and the survivors are

exclusively cooperators. One implication is that defectors, despite their advantages in getting temporarily

higher payoffs, may be particularly vulnerable to large-scale, catastrophic failures. These findings thus sug-

gest that, in a complex system where agents are subject to failure or death, cooperation may be beneficial to

mitigating large-scale breakdown.

During the performance period, we developed a control scheme to enhance cooperation and eliminate

large-scale failures in complex networked systems. Our key idea was that, due to the complex time evolution

of the system, although the payoff of any agent can inevitably become arbitrarily low, the probability that

the payoff remains low for an extended period of time will be small. We were thus led to introduce a time

tolerance for each agent, where an agent will not die or be removed unless its payoff remains below a critical

threshold for time longer than the tolerance. Since the degree distribution of the network is in general not

uniform, it is reasonable that the time tolerance be degree-dependent. A parameter β can then be introduced

to characterize the heterogeneity of the distribution of the time tolerance, where β = 0 signifies completely

uniform distribution. Our main result was that properly chosen time delay can optimize cooperation and

prevent large-scale death. A surprising finding was that optimal state of cooperation occurs near β = 0,

indicating that making time-tolerance distribution uniform is an effective strategy to enhance cooperation.

Specifically, to impose a time tolerance on a complex network, we conceived that a node or an agent’s

debt capacity depends on its relative “importance” in the network. We thus hypothesized the following
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relationship between agent i’s time tolerance and its degree ki:

Ti = NT0

k
β
i

Σlk
β
l

, (15)

where N is the total number of agents, T0 is the nominal time tolerance, and β is an externally control

parameter. For β < 0, agents with higher (lower) degree have lower (higher) time tolerance, the situation is

the opposite for β > 0, and β = 0 corresponds to uniform time tolerance in the network. A large values of

Ti means that the node is more resilient to failure or “bankruptcy.” A death mechanism can be introduced,

e.g., for PDG by choosing the following payoff tolerance for agent i PT
i ≡ αPN

i = αki, where agent i dies

and is removed from the network if its payoff is lower than Pi for consecutive Ti time steps, PN
i is the normal

payoff of agent i when the system is in a healthy state in which all agents are cooperators, and 0 < α < 1 is a

tolerance parameter. Since an agent’s degree may change when their neighbors die, ki is the “instantaneous”

degree of agent i. For α = 1, agents have zero payoff tolerance to breakdown, while for α = 0, agents are

completely tolerant.

In our evolutionary game model, each time step (iteration) thus consists of the following four dynamical

processes. (1) Game playing and payoffs. Each agent plays the classical PDG with all its nearest neighbors,

and the total payoff is the sum of the payoffs gained in its two-player games with all other connected

agents. The PDG parameters are chosen to be R = 1, T = b > 1, and S = P = 0. (2) Strategy updating.

At each time step, agent i randomly chooses a neighbor j and imitates j’s strategy with the probability

Wi→ j = {1+ exp [−(Pj−Pi)/κ]}−1, where Pi and Pj are the payoffs agents i and j, and κ is the level of

agents’ “rationality” representing the uncertainties in assessing the best strategy. We set κ = 0.1. (3) Failure

and agent removal. At each iteration, for agent i, the time in debt ti increases by 1, if Pi falls below the

payoff tolerance PT
i during the prior ti time steps. Otherwise, we set ti = 0. Since ki varies with time, PT

i and

Ti also change with time. If ti > Ti or if ki = 0, agent i and all its links will be removed from the network. (4)

Random rewiring. For agent i whose neighbor j has been removed in step (3), a new connection is added

between agent i and an randomly selected agent in the remaining agents outside i’s current neighborhood,

provided that such an agent exists. This is motivated by the consideration that an agent in general will try

to seek and engage new partners when the payoffs of some of its current partners become insignificant,

and lack of global information leads to random selection. Note that, dynamical processes (1) and (2) are

conventional for typical evolutionary-game dynamics, but processes (3) and (4) are unique features of our

model.

Our computation and heuristic analysis indicated that, despite the network’s being highly heterogeneous,

making the time tolerance as uniformly as possible across the network can lead to the emergence of a stable

cooperation cluster that has recruited majority of the agents in the network. Simultaneously, substantial

death of agents can be avoided. This finding may have implications to policy making to prevent, for example,

large-scale breakdown of social and economical systems. The emergence and evolution of cooperation in

complex systems have been recognized as a fundamental issue in natural, social, and economical sciences,

and our work may provide insights into the control of complex dynamical systems in terms of critical issues

such as stability, performance, and sustainability.

The details can be found in

• Y.-Z. Chen and Y.-C. Lai, “Optimizing cooperation on complex networks in the presence of failure,”

Physical Review E (Rapid Communications) 86, 045101(R), 1-4 (2012).

3.13 Exact controllability of complex networks

One of the most challenging problems in modern network science and engineering is controlling complex

networks. While great effort had been devoted to understanding the interplay between complex networks
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and dynamical processes taking place on them in various natural and technological systems, control of com-

plex dynamical networks remained to be an outstanding problem. Generally, because of the ubiquity of

nonlinearity in nature, one must consider control of complex networked systems with nonlinear dynamics.

However, at present there is no general framework to address this problem because of the extremely com-

plicated interplay between network topology and nonlinear dynamical processes, despite the development

of nonlinear control in certain particular situations such as consensus, communication, traffic and device

networks. To ultimately develop a framework to control complex and nonlinear networks, a necessary and

fundamental step is to investigate the controllability of complex networks with linear dynamics. There ex-

isted well developed theoretical frameworks of controllability for linear dynamical systems in the traditional

field of engineering control. However, significant challenges arise when applying the traditional controlla-

bility framework to complex networks due to the difficulty to determine the minimum number of controllers.

A ground-breaking contribution was made by the Barabasi group in 2011 who developed a minimum input

theory to efficiently characterize the structural controllability of complex networks, allowing a minimum set

of driver nodes to be identified to achieve full control. In particular, the structural controllability of a di-

rected network can be mapped into the problem of maximum matching, where external control is necessary

for every unmatched node. The structural-controllability framework also allows several basic issues to be

addressed, such as linear edge dynamics, lower and upper bounds of energy required for control, control

centrality, and optimization.

Although the structural-controllability theory offers a general tool for controlling directed networks,

a universal framework for addressing the controllability of complex networks with arbitrary structures and

configurations of link weights had been missing. Mathematically, the framework of structural controllability

is applicable to directed networks characterized by structural matrices, in which all links are represented by

independent free parameters. This requirement may be violated if exact link weights are given, motivating

us to pursue an alternative framework beyond the structural-controllability theory. For undirected networks,

the symmetric characteristic of the network matrix accounts for the weak violation of the assumption of

structural matrix, even with random weights. Thus we continued to lack a reliable tool to measure the

controllability of undirected networks. For some practical issue towards achieving actual control, such as

predicting control energy given link weights, necessary and sufficient conditions to ensure full control are

prerequisite. Taken together, a more general and accurate framework to study the controllability of complex

networks was needed.

Supported by AFOSR, we developed an exact-controllability framework as an alternative to the structural-

controllability framework, which offers a universal tool to treat the controllability of complex networks with

arbitrary structures and link weights, including directed, undirected, weighted and unweighted networks

with or without self-loops. Structural controllability can be reproduced in our framework for structural

matrix that can be ensured by assigning random weights to directed links. In particular, based on the Popov-

Belevitch-Hautus (PBH) rank condition that is equivalent to the Kalman rank condition, we proved that

the minimum number of independent driver nodes or external controllers is equal to the maximum geomet-

ric multiplicity of all eigenvalues of the network matrix. If the network matrix is diagonalizable, e.g., as

for undirected networks, controllability is simply determined by the maximum algebraic multiplicity of all

eigenvalues. That is, the minimum number of inputs is determined by the dimension of eigenvectors for

arbitrary networks and, for symmetric networks, this number is nothing but the eigenvalue degeneracy. For

simple regular networks, their exact controllability can be calculated analytically. For more complicated

model networks and many real-world weighted networks with distinct node-degree distributions, the exact

controllability can be efficiently assessed by numerical computations. The minimum set of driver nodes can

be identified by elementary transformation based on the exact-controllability framework. Our systematic

comparison study indicated that the results from our exact-controllability theory are consistent with those

from the structural-controllability theory for cases where both frameworks are applicable. Application of our
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Figure 5: Exact controllability of un-

weighted networks. Exact controllability

measure nD, the number of driver nodes

required to control a network, as a func-

tion of connecting probability p for (a) un-

weighted random networks and (b) random

networks with random weights assigned to

links. (c) nD versus the probability p of

randomly adding links for small-world net-

works. (d) nD versus half of average de-

gree 〈k〉/2 for scale-free networks. All the

networks are undirected and their coupling

matrices are symmetric. The data points

are obtained from the maximum multiplic-

ity theory (MMT) and the error bars denote

the standard deviations, each from 20 inde-

pendent realizations. The curves (SoD) are

the theoretical predictions for sparse and

dense networks, respectively. The repre-

sentative network sizes used are N = 1000,

2000 and 5000.

framework also revealed a number of phenomena that cannot be uncovered by the structural-controllability

framework. For example, we found that for random and small-world networks with identical link weights,

the measure of controllability is a non-monotonic function of link density with largest controllability oc-

curring in the intermediate region. For highly sparse or dense networks, the former being ubiquitous in

real-world systems, the exact-controllability theory can be greatly simplified, leading to an efficient compu-

tational paradigm in terms solely of the rank of the network matrix. Some representative results are shown

in Fig. 5.

Our exact-controllability framework can have broader scope of applications than the structural control-

lability framework. For example, if the weights of partial links are available, our framework will offer better

measurement of controllability by setting the weights of other unavailable links to be random parameters,

namely, partial structural matrix. Our framework is also valid for undirected networks, where the struc-

tural matrix assumption is slightly violated because of the network symmetry. Our framework is as well

applicable to networks full of self-loops with identical or distinct weights. Furthermore, investigating exact

controllability is important for achieving actual control and predicting control energy, especially in man-

made networks. Our exact-controllability theory as an alternative to the structural-controllability theory

then offered deeper understanding of our ability to control complex networked systems.

Details of this work can be found in

• Z.-Z. Yuan, C. Zhao, Z.-R. Di, W.-X. Wang, and Y.-C. Lai, “Exact controllability of complex net-

works,” Nature Communications 4, 2447, 1-9 (2013).

3.14 Emergence of scaling in human-interest dynamics

A fundamental feature of the human society is that its individuals possess all kinds of interests, the driving

force of many human behaviors. Some interests may last for a lifetime while others can fade away in

short time. From time to time our interests also change. In the modern society that we live in, all kinds

of attractions and temptations emerge and disappear on a daily basis. Does this mean that the evolution

of our interest is mostly random? Or are there intrinsic dynamical rules that govern how human interests
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evolve with time? To answer these questions was deemed to be extremely difficult, due to the lack of

appropriate means to characterize human mind and to measure quantitatively how it changes with time.

Yet the questions are fundamental in science, and any revelation of the dynamics of human interest may

have significant applications in commerce, medical sciences, and even defense. In particular, in commerce,

adequate knowledge of customer interests and how they change with time are key to the success of many

businesses as such knowledge can be of tremendous value to advertisement design and product promotion.

In psychiatry, a good understanding of patients’ interests may help generate accurate diagnosis and devise

effective therapeutic approaches. In defense, timely and reliable assessment of certain group or individuals’

interests and their time evolution can help predict the group or individuals’ possible future behaviors and

actions. Apparently, all these rely on human-interest dynamics’ being not completely random.

There had been efforts in modeling and understanding human behaviors that are essential to many social

and economical phenomena, with significant applications in areas ranging from resource allocation and

transportation control to epidemic prediction and personal recommendation. The pursuit had been facilitated

greatly by the advances in information technology, especially by the availability of massive Internet data

and resources. However, to probe into human-interest dynamics is more challenging, due to the difficulty

in characterizing human interests and traditional lack of data sets from which the underlying dynamical

processes may be deduced. In recent years “big data” sets, such as those from e-commerce or mobile-phone

communications, become commonly available, making it possible to quantify human interests and to infer

their intrinsic dynamics. As a branch of the science of “Big Data,” the field of human-interest dynamics is

at its infancy.

A viable approach to probing into human-interest dynamics is to use data analysis as a getaway to un-

cover various phenomena and possible scaling laws. Guided by this principle, we explored two e-commerce

data sets (Douban, Taobao) and one communication data set [Mobile-Phone Reading (MPR)], and focused

on three issues: statistical distribution of the time that an interest lasts, distribution of the return time to

revisit a particular interest, and interest ranking and transition. Considering the large number of factors that

can affect human interest, such as the specific activity contents and distractions of the individual’s attention,

it seems plausible that the underlying dynamics be completely random. Indeed, a widely used assumption is

that of Markovian type of dynamics for individuals’ online behaviors, in which an online user’s next action

depends not on his/her history of interests but on the current interest only. However, there had been evidence

of deviations from the Markovian dynamics. Our systematic analysis of the three big data sets revealed an

unequivocal signature of the power-law scaling behavior characteristic of non-equilibrium complex systems

and, consequently, indicated the existence of intrinsic dynamical rules governing the human-interest dy-

namics. Based on the empirical analysis, we identified three basic ingredients underlying the dynamics:

preferential return, inertia effect and exploration. A mathematical model incorporating these ingredients

was then developed to account for the observed power-law scaling behaviors. Our study represented the first

systematic attempt to probe into the dynamics of human interest, and we expect our finding and model to

have broad applications.

As a representative result, we describe here the power-scaling behavior of interest interval l that we un-

covered from our “big” data sets. We used categories to characterize an individual’s interests, which can be,

for example, music, books and movies on Douban, clothing, footwear, and toys in Taobao, love stories and

science fictions on MPR, and so on. Figure 6(a) shows, for a typical individual on Douban, the distribution

P(l) of l visiting different interest categories, which exhibits a power-law scaling: P(l)∼ l−α. The long tail

associated with the power-law scaling indicates that the individual tends to spend an abnormally long time

visiting certain interests during browsing. Similar scaling behaviors have been found for users on Taobao

and MPR, as shown in Figs. 6(b) and 6(c), respectively. A typical sequence that the values of l corresponding

to an identical interest appear is shown in Fig. 6(d), where we observe a highly non-uniform behavior in the

values of l, giving rise to the power-law distribution in Fig. 6(a). We examined many individuals from the
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Figure 6: Distribution of interest-

dwelling time. (a-c) Probability distribu-

tions P(l) of the time interval l of consec-

utive visits to the same interest for three

representative individuals, each from one

of the three data sets (Douban, Taobao,

and MPR), where the numbers of inter-

ests are 3, 24, and 44, respectively. The

numbers of clicks (Na) for the three cases

are are 18396, 106571, and 4398, respec-

tively. The three distributions can be fit-

ted as power-law P(l) ∼ l−α, with expo-

nents α≈ 1.16,4.02 and 3.35, respectively.

Panel (d) shows the various values of l as

they appear with time, where n is the event

index (an integer variable).

three data sets, and found similar power-law behaviors. In fact, the distribution of l for all users from any

particular data set exhibits a robust power-law scaling. The power-law scaling observed for all cases implies

substantial derivation of the human-interest dynamics from that of the Markovian process (associated with

the transition probability matrix for interests) for which the scaling of l would be exponential.

The scaling laws uncovered from data and the dynamical model developed accordingly can be applied

to addressing significant problems ranging from human-behavior prediction and the design of search algo-

rithms to controlling spreading dynamics. As a demonstration, we quantified the degree of predictability of

user-behavior patterns underlying the three data sets by using the statistical measures of entropy and Fano

inequality, with the result that such patterns are in fact quite predictable, despite the apparent randomness in

the human-interest dynamics.

Details of this work can be found in

• Z.-D. Zhao, Z.-M. Yang, Z.-K. Zhang, T. Zhou, Z.-G. Huang, and Y.-C. Lai, “Emergence of scaling

in human-interest dynamics,” Nature Scientific Reports 3, 3472, 1-7 (2013).

3.15 Robustness of chimera states in complex dynamical systems

The collective dynamics of complex systems are often multifold and much more complicated than the dy-

namics of individual oscillators. For example, when a large number of oscillators, each possessing very

simple dynamics, are coupled together, the collective behaviors of all the oscillators can be highly nontriv-

ial. In the classic Kuramoto network, each oscillator is coupled with every other oscillator - the configu-

ration of a globally coupled network. Each individual oscillator is a simple rotation of certain frequency,

and the dynamics of the oscillators differ only in their frequencies. The coupling function is also a simple

mathematical function, such as a sinusoidal type of function. For relatively weak coupling the motions of

the oscillators are incoherent, due to the heterogeneity in their frequencies, but as the coupling parameter

increases through a critical value, coherence can emerge and persist in the form of partial or complete syn-

chronization. There exists a large body of literature on synchronization in the Kuramoto network, due to its

relevance to many physical, chemical, and biological phenomena.

While the emergence of synchronous behavior as the coupling is strengthened is intuitively reasonable

and anticipated in any coupled oscillator network, complex systems often present us with unexpected and

sometimes quite surprising phenomena. A striking example is the occurrence of chimera state in non-locally

coupled networks of identical oscillators, where different subsets of the oscillators can exhibit completely
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distinct dynamical behaviors. For example, for a simple form of chimera state, there are two distinct types of

behavior among all oscillators in the network: one group of oscillators is nearly perfectly synchronous but

the oscillators in the complementary group are completely incoherent. These two types of behaviors emerge

as one state of the networked system, in contrast to the phenomenon of multiple coexisting attractors in

nonlinear dynamical systems, each with its own basin of attraction. In such a system, while the attractors

coexist in the phase space, starting from a single initial condition the system approaches asymptotically to

only one attractor of certain characteristics, which can be a stable fixed point, a limit cycle, a quasiperiodic

state, or even a chaotic attractor, but from the same initial condition the system cannot simultaneously pos-

sess more than one of these traits. Signatures of chimera states were first observed from the spatiotemporal

evolution of a system of coupled nonlinear oscillators and the phenomenon was named “domain-like spatial

structure.” Chimera states in highly regular and non-locally coupled networks of identical oscillators are

thus a quite remarkable type of collective dynamics. We note that nonlocal coupling is relevant to physical

systems such as the Josephson-junction arrays and to chemical oscillators as well.

The paradigmatic setting in which chimera states had been studied theoretically and computationally

is that of non-locally coupled phase oscillators. A fundamental question was how robust chimera states

are with respect to perturbations. That is, when the system details deviate from those of the paradigmatic

setting or when noise is present, can chimera states still emerge and sustain? In this regard, the issue of

noise was successfully addressed, as chimera states had been experimentally observed in a chemical and an

optical systems that are intrinsically noisy. An outstanding issue is then how random perturbations to the

network structure affect the chimera states. We addressed this structural robustness issue that is fundamental

to our understanding of chimera states. In particular, starting from the standard setting of a non-locally

coupled array of identical phase oscillators, we removed links systematically but randomly according to

the removal probability p and investigated whether and to what extent chimera states can persist as p is

increased from zero. For a fixed value of p, for an infinite network there are an infinite number of possible

configurations. For a realistic network of finite size, the number of configurations can still be extremely

large. Due to randomness in the network structure, the persistence of chimera states can be characterized

but in a statistical sense. In particular, given p, certain fraction of the network configurations would permit

chimera states, while others would not. One can thus define a probability for chimera states, denoted by

F(p), where F(p)→ 1 for p→ 0 and in general we expect F(p) to be a decreasing function of p. Our

extensive computations revealed that chimera states can persist for a range of p values in the sense that F(p)
maintains values close to unity even when p is appreciably away from zero, strongly suggesting that the

exotic dynamical states are robust with respect to random structural perturbations to the underlying network.

We then resorted to two independent theoretical approaches, one based on self-consistency and another

based on the spectral theory for collective dynamics on networks. Both gave results that are consistent with

those from direct numerical computations. A surprising finding is that, even for relatively large values of

p for which a large number of links have been removed and chimera state is deemed unlikely, the division

of oscillators into coherent and incoherent groups persists. The commonly recognized chimera state, which

occurs for smaller values of p, is nothing but a particular case in which the coherent oscillators happen to be

synchronized or phase-locked. Some representative results are shown in Fig. 7.

The phenomenon that we uncovered is rather striking: regardless of whether chimera state can emerge,

the system exhibits a general breathing pattern in its spatiotemporal evolution. Associated with such a

pattern, the oscillators in the system can be qualitatively classified into two groups: one group of high

coherence and another of weak coherence. The particular breathing pattern stipulates that this division holds

even for large link-removal probability where chimera state is ruled out. The implication is that the breathing

pattern in the spatiotemporal evolution of the system is general and robust, and chimera state is a particular

phenomenon where the oscillators in the highly coherent group happen to be phase synchronized. Our

work thus provided deeper insights into the dynamical origin of chimera state, a phenomenon of continuous
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Figure 7: Spatiotemporal evolution of

the order parameter associated with

chimera states. Contour plots represent-

ing spatiotemporal evolution of the order

parameter for five values of the link re-

moval probability p (from left to right: 0,

0.1, 0.2, 0.4, and 0.6). The five patterns

in the top row are obtained by the PDE in

the continuum limit, and the corresponding

patterns in the bottom row are from direct

numerical calculations of the original dy-

namical system.

interest and subject to intense recent investigation.

More details of this work can be found in

• N. Yao, Z.-G. Huang, Y.-C. Lai, and Z.-G. Zheng, “Robustness of chimera states in complex dynami-

cal systems,” Nature Scientific Reports 3, 3522, 1-8 (2013).

3.16 Uncovering hidden nodes in complex networks in the presence of noise

The difficulty to develop effective methods for detecting hidden nodes in complex networks is compounded

by the fact that the indirect information on which any method of detecting hidden objects relies can be subtle

and sensitive to changes in the system or in the environment. In particular, in realistic situations noise and

random disturbances are present. It is conceivable that the “indirect” information can be mixed up with that

due to noise or be severely contaminated. The presence of noise thus poses a serious challenge to detecting

hidden nodes, and some effective “noise-mitigation” method must be developed.

To formulate the problem in a concrete way and to gain insights into the development of a general

methodology, we noted that the basic principle underlying the detection of hidden objects is that their ex-

istence typically leads to “anomalies” in the quantities that can be calculated or deduced from observation.

Simultaneously, noise, especially local random disturbances applied at the nodal level, can also lead to large

variance in these quantities. This is so because, a hidden node is typically connected to a few nodes in

the network that are accessible to the external world, and a noise source acting on a particular node in the

network may also be regarded as some kind of hidden object. Thus, the key to any detection methodology

is to identify and distinguish the effects of hidden nodes on measures for detection from those due to local

noise sources.

In our work, we focused on complex networks and developed a general method to differentiate hidden

nodes from local noise sources. This problem is intimately related to the works on reverse engineering of

complex networks, where the goal is to uncover the full topology of the network based on measured time

series. Our method was based on compressive sensing to detect hidden nodes in the absence of noise sources.

To explain our method in a concrete setting, here we use the network configuration shown schematically in

Fig. 8, where there are 20 nodes, the couplings among the nodes are weighted, and the entire network is

in a noisy environment, but a number of nodes also receive relatively strong random driving. We assume

an oscillator network so that the nodal dynamics are described by nonlinear differential equations, and that

time series can be measured simultaneously from all nodes in the network except one, labeled as #20, which

is a hidden node. The tasks of ascertaining the presence and locating the position of the hidden node are

equivalent to identifying its immediate neighbors, which are nodes #3 and #7 in Fig. 8. Note that, in order to

be able to detect the hidden node based on information from its neighboring nodes, the interactions between

the hidden node and its neighbors must be directional from the former to the latter or be bidirectional.
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Figure 8: Detection of hidden node in

the presence of noise. An example of

a complex network with a hidden node.

Time series from all nodes except hid-

den node #20 can be measured, which can

be detected when its immediate neighbors,

nodes #3 and #7 are unambiguously iden-

tified. Nodes #7, #11, and #14 are driven

by local noise sources.

Otherwise, if the coupling is solely from the neighbors to the hidden node, the dynamics of the neighboring

nodes will not be affected by the hidden node and, consequently, time series from the neighboring nodes

will contain absolutely no information about the hidden node, which is therefore undetectable. The action

of local noise source on a node is naturally directional, i.e., from the source to the node.

We had demonstrated that, when the compressive-sensing paradigm is applied to uncovering the network

topology, the predicted linkages associated with nodes #3 and #7 are typically anomalously dense, and this

piece of information is basically what is needed to identify them as the neighboring nodes of the hidden

node. In addition, when different segments of measurement data are used to reconstruct the coupling weights

for these two nodes, the reconstructed weights associated with these two nodes exhibit significantly larger

variances than those associated with other nodes. However, the predicted linkages associated with the nodes

driven by local noise sources can exhibit behaviors similar to those due to the hidden nodes, leading to

uncertainty in the detection of the hidden node. To address this critical issue is essential to developing

algorithms for real-world applications. Our main idea was to exploit the principle of differential signal to

study the behavior of the predicted link weights as a function of the data used in the reconstruction. Due

to the advantage of compressive sensing, the required data amount can be quite small and, hence, even if

our method requires systematic increase in the data amount, it will still be reasonably small. We argued and

demonstrated that, when the various ratios of the predicted weights associated with all pairs of links between

the possible neighboring nodes and the hidden node are examined, those associated with the hidden nodes

and nodes under strong local noise should show characteristically distinct behaviors, rendering unambiguous

identification of the neighboring nodes of the hidden node. Any such ratio is essentially a kind of differential

signal, because it is defined with respect to a pair of edges. Representative results are shown in Fig. 9.

Detecting hidden nodes in complex networks with a priori unknown nodal dynamics, topology, and

coupling weights has vast application potential, as in social and biological networks. Inferring the existence

of hidden node in the presence of local random perturbations is an extremely challenging problem. Our

efforts represented a step forward in this area of research, where much further work is needed.

More details of this work can be found in

• R.-Q. Su, Y.-C. Lai, X. Wang, and Y.-H. Do, “Uncovering hidden nodes in complex network in the

presence of noise,” Nature Scientific Reports 4, 3944, 1-7 (2014).
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(a) Figure 9: Detection of hidden nodes in the presence

of noise. For the network in Fig. (8), (a) predicted cou-

pling matrix for all nodes except node #20. Time series

from nodes #1 to #19 are available, while node #20 is hid-

den. The predicted weights are indicated by color coding

and the amount of data used is Rm = 0.7. The abnor-

mally dense patterns in the 3rd and 7th rows suggest that

nodes #3 and #7 are the immediate neighbors of the hid-

den node. (b) Variance σ2 of the predicted coefficients

for all accessible nodes, which is calculated using 20 in-

dependent reconstructions based on different segments of

the data. The variances associated with nodes #3 and

#7 are apparently much larger than those with the other

nodes, confirming that these are the neighboring nodes

of the hidden node. There is a definite gap between the

values of the variance associated with neighboring and

non-neighboring nodes of the hidden node, as indicated

by the two horizontal dashed lines in (b). When the lo-

cal noise sources are applied to node #7, #11 and #14,

these there nodes have similar dense bars in (a) and large

variances in (b).

3.17 Reconstructing propagation networks with natural diversity and identifying hidden

source

An important class of collective dynamics is epidemic spreading and information diffusion in the human

society or on computer networks. The past decades have witnessed severe epidemic outbreaks at the global

scale due to the mutation of virus, including SARS, H5N1, and H7N9 in eastern China. Our goal was to

reconstruct the networks hosting the spreading process and identify the source of spreading using limited

measurements. This is especially challenging due to (1) difficulty in predicting and monitoring mutations of

deadly virus and (2) absence of epidemic threshold in heterogeneous networks. Another example is rumor

propagation in the online virtual communities, which can cause financial loss or even social instabilities,

such as the 2011 irrational and panicked acquisition of salt in southeast Asian countries caused by the

nuclear leak in Japan. In this regard, identifying the propagation network for controlling the dynamics is of

great interest. Another significant challenge in reconstructing a spreading network lies in the nature of the

available time series: they are polarized, despite stochastic spreading among nodes. Indeed, the link pattern

and the probability of infection are encrypted in the binary status of individuals, infected or not, analogous

to the collapse of wave function to one associated with some discrete quantum state induced by observation

in quantum mechanics.

There had been previous efforts in addressing the inverse problem of some special types of complex

propagation networks. In particular, for diffusion process originated from a single source, the routes of

diffusion from the source constitute a tree-like structure. If information about the early stage of the spreading

dynamics is available, it would be feasible to decode all branches that reveal the connections from the source

to its neighbors, and then to their neighbors, and so on. Taking into account the time delays in the diffusion

process enables a straightforward inference of the source in a complex network through enumerating all

possible hierarchical trees. However, if no immediate information about the diffusion is available, the tree-

structure based inference method is inapplicable, and the problem of network reconstruction and locating

the source becomes extremely challenging, hindering control of diffusion and delivery of immunization.
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The loss of knowledge about the source is common in real situations. For example, passengers on an

international flight can carry a highly contagious disease, making certain airports the immediate neighbors of

the hidden source, which would be difficult to trace. In another example, the source could be migratory birds

coming from other countries or continents. A general data-driven approach, applicable in such scenarios,

was lacking.

Sponsored by AFOSR, we developed a general theoretical framework to reconstruct complex propaga-

tion networks from time series based on compressed sensing theory (CST). Due to the striking characteris-

tics of CST such as the extremely low data requirement and rigorous guarantee of convergence to optimal

solutions, our framework is highly efficient and accurate. However, casting the inverse problem into the

CST framework is highly nontrivial. Although CST has been used to uncover the nodal interaction patterns

for coupled oscillator networks or evolutionary games from time series, the dynamics of epidemic propa-

gation is typically highly stochastic with, for example, binary time series, rendering inapplicable previous

CST-based formulations. Further, despite the use of alternative sparsity enforcing regularizers and convex

optimization to infer networks, CST had not been applied to reconstructing propagation networks, especially

when the available time series are binary. Our main accomplishment was then the development of a scheme

to implement the highly nontrivial transformation associated with the spreading dynamics in the paradigm

of CST. Without loss of generality, we employed two prototypical models of epidemic spreading: classic

susceptible-infected-susceptible (SIS) dynamics and contact processes (CP), on both model and real-world

(empirical) networks. Inhomogeneous infection and recovery rates as representative characteristics of the

natural diversity are incorporated into the diffusion dynamics to better mimic the real-world situation. We

assumed that only binary time series can be measured, which characterize the status of any node, infected

or susceptible, at any time after the outbreak of the epidemic. The source that triggers the spreading pro-

cess is assumed to be externally inaccessible (hidden). In fact, one may not even realize its existence from

available time series. Our method enabled, based on relatively small amounts of data, a full reconstruc-

tion of the epidemic spreading network with nodal diversity and successful identification of the immediate

neighboring nodes of the hidden source (thereby ascertaining its existence and uniquely specifying its con-

nections to nodes in the network). The framework was validated with respect to different amounts of data

generated from various combinations of the network structures and dynamical processes. High accuracy,

high efficiency and applicability in a strongly stochastic environment with measurement noise and missing

information are the most striking characteristics of our framework. Thus broad applications can be expected

in addressing significant problems such as targeted control of disease and rumor spreading.

More details of this work can be found in

• Z.-S. Shen, W.-X. Wang, Y. Fan, Z.-R. Di, and Y.-C. Lai, “Reconstructing propagation networks with

natural diversity and identifying hidden source,” Nature Communications 5, 4323, 1-10 (2014).

3.18 Spatiotemporal patterns and predictability of cyberattacks

Highly networked communication and information infrastructures built via various state-of-the-art technolo-

gies play crucial roles in modern economic, social, military, and political activities. However, such sophis-

ticated infrastructures are facing more and more severe security challenges on the global scale. Earlier

theoretical works focused on understanding the complex topologies of the Internet and on the likelihood of

large scale failures caused by node removal in complex networks. Recent years have witnessed tremendous

efforts devoted to mitigating and coping with increasing cybersecurity threats. For example, attack graphs

were invented to analyze the overall network vulnerability and to generate a global view of network security

against attacks. By deploying network sensors at particular points in the Internet, monitoring systems were

built to detect cyberthreats and statistically analyze the time, sources, and the types of attacks, and various

visualization methods were developed to better understand the result of the detection and analysis. Quite
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recently, a genetic epidemiology approach to cybersecurity was proposed to understand the factors that de-

termine the likelihood that individual computers are compromised, and the general concept of cybersecurity

dynamics was introduced.

Attack traffic analysis were mainly done in the field of Intrusion Detection System (IDS), the cy-

berspace’s equivalent to the burglar alarm. IDS has become one of the fundamental technologies for network

security. There are three approaches to building an IDS: (1) signature or misuse detection, (2) anomaly de-

tection, and (3) hybrid or compound detection. Specifically, signature detection technique is based on a

predefined set of known attack signatures obtained from security experts. The system observes the activ-

ities of subjects and alarms if their behaviors match the malicious ones in the attack signature set. Both

host-based and network-based detection systems were developed. Anomaly detection technique is based on

machine learning methodologies, such as system-call based sequence analysis, Bayesian networks, princi-

pal component analysis, and Markov models. The IDS monitoring capability can be improved by taking a

hybrid approach that combines both signature and anomaly detection strategies. All these methods are often

based on data packet payload inspection and thus are difficult to perform for high speed networks. Another

limitation of these approaches is the assumption that either the attacks are well defined (i.e., signatures) or

the normal behaviors are well defined (so are the abnormal behaviors). There had been a growing interest

in flow-based intrusion detection technologies, by which communication patterns within the network are

analyzed, instead of the contents of individual packets. Interestingly, a quite recent study analyzing the

data obtained from the host IDSs revealed strong associations between the network services running on the

host and the specific types of threats to which it is susceptible. Making use of the plan recognition method

in artificial intelligence, one can predict the attack plan from the IDS alert information. Utilizing virtual

or physical networks to test these IDS techniques can be costly and time consuming, hence, as an alterna-

tive, simulation modeling approaches were developed to represent computer networks and IDS to efficiently

simulate cyberattack scenarios. As botnets have become a major threat in cyberspace, cyberattack traffic

patterns had also been used to understand botnet’s Command-and-Control strategies.

We uncovered the existence of intrinsic spatiotemporal patterns underlying cyberattacks and addressed

the important question of whether certain such attacks may be predicted or anticipated in advance. The over-

whelming complexity of the modern cyberspace would suggest complete randomness in the distribution of

cyberattacks and, as a result, the intuitive expectation is that attackers’ behaviors are random and attacks

are unpredictable. However, our discovery of the spatiotemporal patterns and quantitative characterization

of the predictability of these patterns suggested the otherwise. In particular, distinct from previous works

on cyberattack analysis, our efforts concentrate on analyzing the macroscopic properties of the attack traffic

flows using a data set of cyberattacks available to us. Especially, the data set recorded attacks on 491 con-

secutive victim IP addresses (sensors) in 18 days. The IP addresses can thus be regarded, approximately, as

a variable in space. An attack is regarded as an event occurring in both space and time, and we can speak of

events in spatiotemporal dimensions. This is much more comprehensive than the analysis of the individual

time series obtained from sampled IP addresses or the time series obtained by treating the IP addresses as a

whole. Our results revealed, for the first time, that robust macroscopic patterns exist in the seemingly ran-

dom cyberspace: majority of the attacks are governed by a few very limited number of patterns, indicating

that cyberattacks are mainly committed by a few types of major attackers, each with unique spatiotemporal

characteristics. More specifically, the patterns can be divided into two types: deterministic and stochastic.

The emergence of deterministic patterns implies predictability, which can potentially be exploited to antic-

ipate certain types of attacks to achieve greater cybersecurity. We characterized the predictability of attack

frequency time series based on information entropy. Our results suggested a surprisingly high degree of

predictability, especially for the IPs under deterministic attack. Effective algorithms can then be developed

to predict the future attack frequencies. We also developed methods to evaluate the inference probability

between the attack frequency time series based on series similarity, which may allow us to plant much fewer
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attack probes into the Internet while still achieving effective monitoring. The stochastic patterns can be

quantified using the flux-fluctuation law in statistical and nonlinear physics. Our findings outlined a global

picture of how cyberattacks are initiated and distributed into the Internet. This would be of potential value

to the development of defense strategies against cyberattacks on a global scale.

More details of this work can be found in

• Y.-Z. Chen, Z.-G. Huang, S.-H. Xu, and Y.-C. Lai, “Spatiotemporal patterns and predictability of

cyberattacks,” PLoS ONE, accepted (to appear in June 2015).

4 Personnel Supported and Theses Supervised by PI

4.1 Personnel Supported

The following people received salaries from the AFOSR Project during various time periods.

• Faculty: Ying-Cheng Lai (PI), ISS Chair Professor of Electrical Engineering, Professor of Physics.

• Post-Doctoral Fellows: Dr. Wenxu Wang and Dr. Zigang Huang.

• Ph.D. Students: Rui Yang (2012), Xuan Ni (2013), Riqi Su (to graduate in 2015), Yuzhong Chen (to

graduate in 2016), Lezhi Wang (ongoing).

4.2 Ph.D. graduates who participated in research in the project area

1. Rui Yang, Electrical Engineering, ASU, May 2012. Ph.D. Dissertation: System reconstruction via

compressive sensing, complex-network dynamics, and electronic transport in graphene systems.

2. Xuan Ni, Electrical Engineering, ASU, May 2013. Ph.D. Dissertation: Effect of chaos on relativistic

quantum tunneling; Recipient of 2012-2013 Palais Outstanding Doctoral Student Award, ASU

ECEE.

5 Interactions/Transitions

5.1 Collaboration with AFOSR scientist

Dr. Vassilios Kovanis from the Air Force Research Laboratory at Wright Patterson Air Force Base, on

compressive-sensing based identification of complex dynamical systems and networks.

5.2 Invited talks on topics derived from the project

During the project period, PI gave the following invited plenary talks, seminars, and colloquia on various

topics derived from AFOSR sponsored research.

1. “Predicting complex networks and dynamical systems based on time series,” 2010 NIMS (National In-

stitute for Mathematical Sciences) International Workshop on Applied Dynamical Systems, Daejeon,

South Korea; December 8, 2010.

35



2. “Predicting complex networks and dynamical systems based on time series,” Plenary talk, The 1st

International Symposium on Innovative Mathematical Modelling, University of Tokyo, Japan; March

2, 2011.

3. “Catastrophic dynamics on complex networks: prediction and control,” Invited talk, NSF Workshop

on Building Engineering Complex Systems, Arlington, VA; March 29, 2011.

4. “Uncovering complex-network topologies and dynamical systems based on time series,” Invited talk,

XXXI European Dynamics Days Conference, University of Oldenburg, Germany; September 13,

2011.

5. “Time-series based prediction of nonlinear dynamical systems and complex networks,” Seminar, Cen-

ter for Biological Physics, Arizona State University; September 21, 2011.

6. “Reverse engineering of nonlinear dynamical systems and complex networks - a compressive-sensing

based approach,” Plenary talk, International Conference on Modeling Life Sciences, Fudan University,

Shanghai, China; September 26, 2011.

7. “Reverse engineering of nonlinear dynamical systems and complex networks,” Colloquium, Depart-

ment of Physics, Eastern China Normal University, Shanghai, China; September 27, 2011.

8. “Transient chaos,” Plenary talk, The Fourth International Workshop on Chaos-Fractals: Theory and

Applications, Hangzhou Dianzi University, Hangzhou, China; October 22, 2011.

9. “Introduction to transient chaos,” Undergraduate colloquium, Department of Physics, Lanzhou Uni-

versity, Lanzhou, China; October 25, 2011.

10. “Transient Chaos,” Plenary talk, International Workshop on Anomalous Statistics, Generalized En-

tropies, and Information Geometry, Nara Women’s University, Nara, Japan; March 7, 2012.

11. “Uncovering complex-network topologies and dynamical systems based on compressive sensing,”

Plenary lecture, International Symposium on Compressed Sensing: Theory and Applications, Tianjin

University, Tianjin, China; June 9, 2012.

12. “Transient Chaos,” Colloquium, School of Electrical Engineering and Automation, Tianjin University,

Tianjin, China; June 10, 2012.

13. “Controlling complex networks,” Plenary talk, 5th Shanghai International Symposium on Nonlinear

Science and Applications, Fudan University, Shanghai, China; June 28, 2012.

14. “Complex networks: controllability and control of collective dynamics,” Graduate Colloquium, School

of Physics, Lanzhou University, Lanzhou, China; July 4, 2012.

15. “Complex networks: controllability and control of collective dynamics,” Colloquium, School of Elec-

trical Engineering and Automation, Xi’an University of Technology, Xi’an, China; July 9, 2012.

16. “Transient chaos,” Plenary talk, Dynamics Days Asia Pacific 7 - The 7th International Conference

on Nonlinear Science & the 11th Taiwan International Symposium on Statistical Physics, Academia

Sinica, Taipei, Taiwan; August 6, 2012.

17. “Research on nonlinear dynamics and complex systems for applied mathematics - a vision,” Distin-

guished University Lecture (hosted by the President of the University), Kyungpook National Univer-

sity, Daegu, South Korea; September 11, 2012.

18. “Predicting dynamical systems and complex networks via compressive sensing,” Colloquium, De-

partment of Applied Mathematics, Ulsan National Institute of Science and Technology, Ulsan, South

Korea; November 14, 2012.

36



19. “Predicting complex dynamical systems via compressive sensing,” Seminar, Department of Mathe-

matics, Kyungpook National University, Daegu, South Korea; December 6, 2012.

20. “Reverse engineering of nonlinear dynamical systems and complex networks,” Invited talk, NSF

Workshop on Building Engineered Complex Systems, Arlington, VA; January 24, 2013.

21. “Recent advances in complex networks,” Graduate Seminar Series (fifteen 90-minute seminars), on

Sabbatical Leave at Kyungpook National University, South Korea; March 4 - June 10, 2013.

22. “Hidden nodes, extreme events, human-interest dynamics, and quantum entanglement,” Invited talk,

Invited-Only ARO Workshop on Information in Complex Dynamical Systems, Burlington, VM; July

18, 2013.

23. “Nonlinear dynamics and complex systems - a mathematical paradigm for cutting-edge, interdisci-

plinary research,” Invited Keynote talk, IBS (Institute for Basic Sciences) International Symposium

on “Towards a mathematical theory of nonlinear dynamical and complex systems,” Seoul, South Ko-

rea; August 1, 2013.

24. “Controlling nonlinear dynamics on complex networks,” Invited talk, Satellite Symposium of NetSci

2014 (International School and Conference on Network Science), Berkeley, California; June 2, 2014.

25. “Controlling nonlinear dynamics on complex networks,” Plenary talk, The 6th Shanghai International

Symposium on Nonlinear Sciences and Applications, Fudan University, Shanghai, China; June 29,

2014.

26. “Data based reconstruction of complex networks and energy optimization,” Keynote lecture, North

America-East Asia Workshop on Big Data Analytics for Infrastructure and Building Sustainability

and Resilience (IBSR) Research, Beijing, China; September 19, 2014.

27. “Transient dynamics in nonlinear and complex systems,” Invited talk, ARO Workshop on Cyber Se-

curity Dynamics, University of North Carolina, Chapel Hill; September 23, 2014.

28. “Data based reconstruction of complex dynamical systems,” Colloquium, University of Missouri,

Columbia, MO; October 30, 2014.

29. “Nonlinear dynamics and complex systems - a paradigm for cutting-edge, interdisciplinary research,”

Physics Colloquium, Shanxi Normal University, Xi’an, China; March 11, 2015.

6 Past Honors

1. NSF Faculty Career Award, 1997.

2. Air Force PECASE, 1997.

3. Election as a Fellow of the American Physical Society, 1999. Citation: For his many contributions to

the fundamentals of nonlinear dynamics and chaos.

4. NSF ITR Award, 2003.

5. Outstanding Referee Award, American Physical Society, 2008.

37



Response ID:4613 Data

1.

1. Report Type

Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.

Ying-Cheng.Lai@asu.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report

1-480-965-6668

Organization / Institution name

Arizona State University

Grant/Contract Title
The full title of the funded effort.

PREDICTING AND CONTROLLING COMPLEX NETWORKS

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".

FA9550-10-1-0083

Principal Investigator Name
The full name of the principal investigator on the grant or contract.

Ying-Cheng Lai

Program Manager
The AFOSR Program Manager currently assigned to the award

Dr. Tristan Nguyen

Reporting Period Start Date

04/01/2010

Reporting Period End Date

03/31/2015

Abstract

The principal Objective of the project was to develop methods to predict and control complex networks. For
prediction, a number of methods were articulated and tested to uncover the structures and topologies of
complex networks as well as various dynamical processes on the networks based solely on time series
data or measured signals. A compressive sensing based framework for network and nonlinear dynamical
systems reconstruction was pioneered. For control, key issues including linear controllability of complex
networks, control energy, control of collective dynamics, and control of nonlinear dynamics on complex
networks were addressed. A number of new phenomena in complex dynamical systems were uncovered
and understood, and computational paradigms were established for prediction and control. The AFOSR
project resulted in 50 refereed-journal papers, including papers in high-impact journals such as Physical
Review Letters, Nature Communications, and Physical Review X. The AFOSR support provided PI with the
opportunity to supervise a number of PhD students: two graduated, one to graduate in 2015, and two
ongoing. PI gave about 30 plenary lectures, seminars, and colloquiums all over the world on predicting and
controlling complex networks. 

Specific accomplishments include (1) uncovering the full topology of oscillator networks, (2) cascading
failures and the emergence of cooperation in evolutionary-game based models of social and economic



networks, (3) information explosion on complex networks and control, (4) pattern formation,
synchronization and outbreak of biodiversity in cyclically competing games, (5) predicting catastrophes in
nonlinear dynamical systems by compressive sensing, (6) time-series based prediction of complex
oscillator networks via compressive sensing, (7) reconstruction of social networks based on evolutionary-
game data via compressive sensing, (8) optimizing controllability of complex networks by minimum
structural perturbations, (9) detecting hidden nodes in complex networks from time series based on
compressive sensing, (10) Forecasting synchronizability of complex networks from data, (11) emergence of
grouping in multi-resource minority game dynamics, (12) optimizing cooperation on complex networks in
the presence of failure, (13) exact controllability of complex networks, (14) emergence of scaling in human
interest dynamics, (15) robustness of chimera states in complex dynamical systems, (16) uncovering
hidden nodes in complex networks in the presence of noise, (17) reconstructing propagation networks with
natural diversity and identifying hidden source, and (18) spatiotemporal patterns and predictability of
cyberattacks.

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation.  E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form.  A blank SF298 can be found here.  Please do not password protect or secure the PDF 

The maximum file size for an SF298 is 50MB.

SF298_FA9550-10-1-0083.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF . The
maximum file size for the Report Document is 50MB.

Final_Report_FA9550-10-1-0083_Lai.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

1. J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, “Noise bridges dynamical correlation and topology in coupled
oscillator networks,” Physical Review Letters 104, 058701, 1-4 (2010). 

2. H.-J. Shi, R. Yang, W.-X. Wang, and Y.-C. Lai, “Basins of attraction for species extinction and coexistence
in spatial rock-paper-scissors games,” Physical Review E (Rapid Communications) 81, 030901(R), 1-4
(2010). 

3. W.-X. Wang, Y.-C. Lai, and C. Grebogi, “Effect of epidemic spreading on species coexistence in spatial
games,” Physical Review E 81, 046113, 1-4 (2010). One figure from this paper was selected for
“Kaleidoscope” of PRE. 

4. R. Yang, W.-X. Wang, Y.-C. Lai, and C. Grebogi, “Role of intraspecific competition in the coexistence of
mobile populations in spatially extended ecosystems,” Chaos 20, 023113, 1-6 (2010). This work was
selected by the Virtual Journal of Biological Physics Research for the June 1, 2010 issue
(http://www.vjbio.org). 

5. X. Ni, W.-X. Wang, Y.-C. Lai, and C. Grebogi, “Cyclic competition of mobile species on continuous space:
pattern formation and coexistence,” Physical Review E 82, 066211, 1-8 (2010). This work was selected by
the Virtual Journal of Biological Physics Research for the January 1, 2011 issue (http://www.vjbio.org). 

6. X. Ni, R. Yang, W.-X. Wang, Y.-C. Lai, and C. Grebogi, “Basins of coexistence and extinction in spatially
extended ecosystems of cyclically competing species,” Chaos 20, 045116, 1-8 (2010). This work was
selected by the Virtual Journal of Biological Physics Research for the January 1, 2011 issue

http://www.wpafb.af.mil/shared/media/document/AFD-070820-035.pdf
http://www.wpafb.af.mil/shared/media/document/AFD-070820-035.pdf
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/218-1f8254e77a5b07e3965e902bd80b297a_SF298_FA9550-10-1-0083.pdf
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/11-a96f8d1eb7a41e422ffc8ad2205255d3_Final_Report_FA9550-10-1-0083_Lai.pdf


(http://www.vjbio.org). 

7. W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi, “Predicting catastrophes in nonlinear
dynamical systems by compressive sensing,” Physical Review Letters 106, 154101, 1-4 (2011). 

8. W.-X. Wang, X. Ni, Y.-C. Lai, and C. Grebogi, “Pattern formation, synchronization and outbreak of
biodiversity in cyclically competing games,” Physical Review E 83, 011917, 1-9 (2011). 

9. R.-R. Liu, W.-X. Wang, Y.-C. Lai, G.-R. Chen, and B.-H. Wang, “Optimal convergence in naming game
with geography-based negotiation on small-world networks,” Physics Letters A 375, 363-367 (2011). 

10. H.-X. Yang, W.-X. Wang, Y.-B. Xie, Y.-C. Lai, and B.-W. Wang, “Transportation dynamics on net- works
of mobile agents,” Physical Review E 83, 016102, 1-5 (2011). 

11. L.-L. Jiang, M. Perc, W.-X. Wang, Y.-C. Lai and B.-H. Wang, “Impact of link deletions on public
cooperation in scale-free networks,” Europhysics Letters 93, 40001, 1-6 (2011). 

12. W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and M. A. F. Harrison, “Time-series based prediction of
complex oscillator networks via compressive sensing,” Europhysics Letters 94, 48006, 1-6 (2011). 

13. L. Huang and Y.-C. Lai, “Cascading dynamics in complex quantum networks,” Chaos 21, 025107, 1-6
(2011). This work was selected by July 2011 issue of Virtual Journal of Quantum Information
(http://www.vjquantuminfo.org). 

14. W.-X. Wang, Y.-C. Lai, and D. Armbruster, “Cascading failures and the emergence of cooperation in
evolutionary game based models of social and economical networks,” Chaos 21, 033112, 1-12 (2011). 

15. H.-X. Yang, W.-X. Wang, Y.-C. Lai, Y.-B. Xie, and B.-H. Wang, “Control of epidemic spreading on
complex networks by local traffic dynamics,” Physical Review E (Rapid Communication) 84, 045101(R), 1-
4 (2011). 

16. W.-X. Wang, Y.-C. Lai, C. Grebogi, and J.-P. Ye, “Network reconstruction based on evolutionary- game
data via compressive sensing,” Physical Review X 1, 021021, 1-7 (2011). 

17. R.-R. Liu, W.-X. Wang, Y.-C. Lai, and B.-H. Wang, “Cascading dynamics on random networks:
crossover in phase transition,” Physical Review E 85, 026110, 1-5 (2012). 

18. W.-X. Wang, X. Ni, Y.-C. Lai, and C. Grebogi, “Optimizing controllability of complex networks by small
structural perturbations,” Physical Review E 85, 026115, 1-5 (2012). 

19. G.-M. Zhu, H.-J. Yang, R. Yang, J. Ren, B. Li, and Y.-C. Lai, “Uncovering evolutionary ages of nodes in
complex networks,” European Journal of Physics B 85, 106, 1-6 (2012). 

20. G. Yan, J. Ren, Y.-C. Lai, C. H. Lai, and B. Li, “Controlling complex networks - how much energy is
needed?” Physical Review Letters 108, 218703, 1-5 (2012). 

21. R.-Q. Su, X. Ni, W.-X. Wang, and Y.-C. Lai, “Forecasting synchronizability of complex networks from
data,” Physical Review E 85, 056220, 1-11 (2012). 

22. H.-X.Yang,W.-X.Wang,Y.-C.Lai,andB.-H.Wang,“Traffic-drivenepidemicspreadingonnetworks of mobile
agents,” Europhysics Letters 98, 68003, 1-5 (2012). 

23. L.-L. Jiang, W.-X. Wang, Y.-C. Lai, and X. Ni, “Multi-armed spirals and multi-pairs antispirals in spatial



rock-paper-scissors games,” Physics Letters A 376, 2292-2297 (2012). 

24. R.-Q. Su, W.-X. Wang, and Y.-C. Lai, “Detecting hidden nodes in complex networks from time series,”
Physical Review E (Rapid Communication) 85, 065201(R), 1-4 (2012). 

25. R. Yang, Y.-C. Lai, and C. Grebogi, “Forecasting the future: is it possible for time-varying nonlinear
dynamical systems?” Chaos 22, 033119, 1-6 (2012). 

26. F. Ricci, R. Tonelli, L. Huang, and Y.-C. Lai, “Onset of chaotic phase synchronization in complex
networks of coupled heterogeneous oscillators,” Physical Review E 86, 027201, 1-4 (2012). 

27. W.-X. Wang, J. Ren, Y.-C. Lai, and B. Li, “Reverse engineering of complex dynamical networks in the
presence of time-delayed interactions based on noisy time series,” Chaos 22, 033131, 1-8 (2012). 

28. Z.-G. Huang, J.-Q. Zhang, J.-W. Dong, L. Huang, and Y.-C. Lai, “Emergence of grouping in multi-
resource minority game dynamics,” Nature Scientific Reports 2, 703, 1-8 (2012). 

29. Y.-Z. Chen and Y.-C. Lai, “Optimizing cooperation on complex networks in the presence of failure,”
Physical Review E (Rapid Communications) 86, 045101(R), 1-4 (2012). 

30. L. Huang, Y.-C. Lai, and M. A. F. Harrison, “Probing complex networks from measured time series,”
International Journal of Bifurcation and Chaos 22, 1250236, 1-12 (2012). 

31. H.-X. Yang, W.-X. Wang, and Y.-C. Lai, “Traffic-driven epidemic outbreak on complex networks: how
long does it take?” Chaos 22, 043146, 1-5 (2012). 

32. Z. Zhou, Z.-G. Huang, L. Huang, Y.-C. Lai, L. Yang, and D.-S. Xue, “Universality of flux-fluctuation law in
complex dynamical systems,” Physical Review E 87, 012808, 1-6 (2013). 

33. J.-Q. Zhang, Z.-G. Huang, J.-Q. Dong, L. Huang, and Y.-C. Lai, “Controlling collective dynamics in
complex, minority-game resource-allocation systems,” Physical Review E 87, 052808, 1-9 (2013). 

34. J.-P. Park, Y.-H. Do, Z.-G. Huang, and Y.-C. Lai, “Persistent coexistence of cyclically competing species
in spatially extended ecosystems,” Chaos 23, 023128, 1-9 (2013). 

35. Z.-Z. Yuan, C. Zhao, Z.-R. Di, W.-X. Wang, and Y.-C. Lai, “Exact controllability of complex net- works,”
Nature Communications 4, 2447, 1-9 (2013). 

36. B.-S. Kim, Y.-H. Do, and Y.-C. Lai, “Emergence of synchronization and size scaling in moving-agent
networks,” Physical Review E 88, 042818, 1-7 (2013). 

37. Z.-D. Zhao, Z.-M. Yang, Z.-K. Zhang, T. Zhou, Z.-G. Huang, and Y.-C. Lai, “Emergence of scaling in
human-interest dynamics,” Nature Scientific Reports 3, 3472, 1-7 (2013). 

38. K. Gong, M. Tang, P. M. Hui, Y. Do, and Y.-C. Lai, “An efficient immunization strategy for community
networks,” PLoS One 8, e83489, 1-11 (2013). 

39. N. Yao, Z.-G. Huang, Y.-C. Lai, and Z.-G. Zheng, “Robustness of chimera states in complex dynamical
systems,” Nature Scientific Reports 3, 3522, 1-8 (2013). 

40. R.-Q. Su, Y.-C. Lai, X. Wang, and Y.-H. Do, “Uncovering hidden nodes in complex network in the
presence of noise,” Nature Scientific Reports 4, 3944, 1-7 (2014). 



41. W. Wang, M. Tang, H. Yang, Y.-H. Do, Y.-C. Lai, and G.-W. Lee, “Asymmetrically interacting spreading
dynamics on complex layered networks,” Nature Scientific Reports 4, 5097, 1-8 (2014). 

42. Z.-S. Shen, W.-X. Wang, Y. Fan, Z.-R. Di, and Y.-C. Lai, “Reconstructing propagation networks with
natural diversity and identifying hidden source,” Nature Communications 5, 4323, 1-10 (2014). 

43. H.-F. Zhang, Z.-X. Wu, M. Tang, and Y.-C. Lai, “Effects of behavioral response and vaccination policy on
epidemic spreading - an approach based on evolutionary-game dynamics,” Nature Scientific Reports 4,
5666, 1-10 (2014). 

44. R.-Q. Su, Y.-C. Lai, and X. Wang, “Identifying chaotic FitzHugh-Nagumo neurons using compressive
sensing,” Entropy 16, 3889-3902 (2014). 

45. Y.-C. Lai, “Controlling complex, nonlinear dynamical networks,” National Science Review 1, 339-341
(2014). 

46. Y.-Z. Chen, Z.-G. Huang, and Y.-C. Lai, “Controlling extreme events on complex networks,” Nature
Scientific Reports 4, 6121, 1-10 (2014). 

47. H.-F. Zhang, J.-R. Xie, M. Tang, and Y.-C. Lai, “Suppression of epidemic spreading in complex
networks by local information based behavioral responses,” Chaos 24, 043106, 1-7 (2014). 

48. Z.-Z. Yuan, C. Zhao, W.-X. Wang, Z.-R. Di, and Y.-C. Lai, “Exact controllability of multiplex net- works,”
New Journal of Physics 16, 103036, 1-24 (2014). 

49. L.-Z. Wang, Z.-G. Huang, Z.-H. Rong, X.-F. Wang, and Y.-C. Lai, “Emergence and evolution of online
social networks,” PLoS ONE 9(11), e111013, 1-6 (2014). 

50. Y.-Z. Chen, Z.-G. Huang, S.-H. Xu, and Y.-C. Lai, “Spatiotemporal patterns and predictability of
cyberattacks,” PLoS ONE, accepted (to appear in June 2015).

Changes in research objectives (if any):

None

Change in AFOSR Program Manager, if any:

Original AFOSR Program Manager:

Dr. Robert L. Herklotz
Program Manager: Information Operations and Security
Air Force Office of Scientific Research (AFOSR/RSL)
Suite 325, Room 3112
875 N. Randolph Street
Arlington, VA 22203-1768

Current AFOSR Program Manager:

Dr. Tristan Nguyen
Program Manager: Information Operations and Security
Air Force Office of Scientific Research (AFOSR/RSL)
Suite 325, Room 3112
875 N. Randolph Street
Arlington, VA 22203-1768

Extensions granted or milestones slipped, if any:



None

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

 Starting FY FY+1 FY+2

Salary    

Equipment/Facilities    

Supplies    

Total    

Report Document

Report Document - Text Analysis

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

May 29, 2015 13:13:30 Success: Email Sent to: Ying-Cheng.Lai@asu.edu


	DTIC_Title_Page_-_PREDICTING_AND_CONTROLLING_COMPLEX_NETWORKS
	SF298-2
	11-a96f8d1eb7a41e422ffc8ad2205255d3_Final_Report_FA9550-10-1-0083_Lai
	FA9550-10-1-0083 SURV

